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27. A C++ Library

P.J. Plauger

Abstract

The standard library that accompanies C++ has mostly been inherited
unchanged from C. X3J16/WG21 are now debating what changes and
additions to make for the ANSI/ISO standard. Proposals have ranged
from minimalist to significant additions.

This paper traces the historical developments that have brought the
C++ library to its present form. It discusses several philosophies that
can be followed in “completing” the library. And it ends by outlining
an implementation that I am currently undertaking. My goal is to shed
some light on the issues raised by these differing philosophies.

Early History

I have recited the history of the C library on several occasions. (See, for ex-
ample, The Standard C Library, Prentice Hall, 1992. Chapter 12: <stdio.h>
in particular discusses the evolution of the C I/O model.) It’s probably worth
while, however, to outline that history here once again, if only for completeness.
The current form of the C++ library is more an historical accretion than the
result of any concerted planning.
The C library had its roots in UNIX, of course. That’s where the C language

was born and spent its formative years. At the heart of that library were forty-
odd functions. Each of these performed a different UNIX system call from a
C program. In those early times, you could write quite a few of the simpler
text-processing filters (such as cat and cmp) with little additional code.
The UNIX pioneers were tool builders par excellence. Almost reflexively,

they identified and wrote functions that were highly reusable. Before very long,
the first C library took form. It was simply an accretion of these functions. A
few of the functions have changed over the years, but many have been remark-
ably stable.
C’s cultural predecessor is Fortran. You can see that in the formatted I/O

conventions of the early C library. (Even the name printf is revealing.) The
math library is a very direct imitation. Only the string functions represent a sig-
nificant new departure. C has obvious advantages over Fortran in manipulating
pointers and individual characters.
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C is arguably inferior to Fortran in several fundamental ways. The PDP-11,
where C began, discouraged floating-point arithmetic in mixed precisions. That
encouraged Dennis Ritchie to favor type double in both expression arithmetic
and arguments to functions. The C Standard softened this bias in expression
arithmetic but not in the library. C provides only a double library, not the two
(or more) precisions that Fortran programmers love to use.
Part of the problem is a lack of generics in C. Fortran lets you write SIN(X),

for example, to call either the REAL or DOUBLE PRECISION versions of the sine
function. The argument type determines which version gets called. C insists
that you give a different name for each flavor of a function.
C also omits complex arithmetic. You can put it back easily enough in

the form of a library of functions, to be sure. Still, the Fortran programmer
often misses the ability to write arithmetic expressions that include complex
operands. Without user-defined operator overloading, C cannot compete with
the notational convenience of Fortran.

C Spreads Out

The C language did emulate, and surpass, Fortran in another important arena.
It became a portable language of extraordinary power. Moving C away from
UNIX challenged the library severely. The gloriously simple UNIX I/O model
could no longer be relied upon.
A layer of insulation went into the library. It stood between the functions

that read and write characters and those that do battle with the operating
system. To offset potential inefficiencies, it buffered I/O by larger blocks of
characters. Thus was born the stream I/O functions, and the header <stdio.h>.
Other changes took place as well. Those forty-odd UNIX system calls got

worked over. Many could be emulated atop other operating systems, sometimes
with small compromises in semantics. Others fared less well. In the end, both C
and the world’s operating systems changed to meet each other. The spreading
influence of UNIX has made C ever easier to port.
With spreading popularity came increasing numbers of potential contrib-

utors to the library. (It’s easier to toss in another library function, by far,
than to add a keyword or semantic construct to the language.) Even before C
spread widely outside Bell Laboratories, it had accreted a considerable number
of additional functions.
That accretion was far less planned than the construction of the initial

C library. A broader community of programmers got involved, with a broader
spectrum of styles. The header <string.h> is a living monument to this eclectic
approach to library building.
Not all of the additions to C served the lofty goal of improved portability.

Microcomputers and exotic operating systems each made their special demands.
And for every change in the language proper, you can be sure there are ten
special library functions as well.
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C Gets Standardized

Efforts to standardize the C library actually began several years before the lan-
guage itself was addressed. In 1980, the precursor of what is now the POSIX
operating system standard got under way. Its initial goal was to describe a
portable C programming environment for people writing UNIX-based applica-
tions. Some of us were determined to broaden this standard to include “UNIX-
like” systems. Hence, the shared goal was to minimize C library dependencies
on both individual machines and individual operating system vendors.
The POSIX standard effort was well under way when X3J11 began standard-

izing C. We (X3J11) commandeered much of the work of the POSIX committee
as the initial draft of the library portion of the C standard. They had already
eliminated the PDP-11isms for us. Our remaining task was to eliminate the
UNIXisms. (POSIX got left with what is now called the C binding to the
operating system services.)
It was tempting to eliminate the irregularities in the C library as well. X3J11

included considerable expertise on what was both good and bad about program-
ming in C. We probably could have redesigned the C library and got it mostly
right. But more conservative sentiments prevailed. Already, sufficient C code
existed to make changes in the library expensive for a large constituency.
Adding to the library was a different matter, however. Often, the easiest

compromise was to toss in yet another library function to satisfy the perceived
need of a significant minority. The cost to individual programmers was pri-
marily name space pollution. Each addition was one more name with external
linkage that programmers must be aware of.
The cost, in the end, to implementors has been considerable. My experience

was that the C standard at least doubled the size of the C library. If you include
proper support for locales and large character sets, it more than trebles in size.
(In 1978, the C library I wrote took 2,500 lines of C code. In 1986, the ANSI C
version exceeded 5,000 lines. My latest implementation, with locales and all,
exceeds 8,000 lines. Other implementors report similar ratios.)

Enter C++

C++ essentially started with an “almost ANSI” C library. It reflected AT&T’s
serious attempt to track the evolving ANSI standard. It also reflected the
inevitable lags. AT&T has an enormous amount of old code to keep alive. The
company must also choose its new directions with care. How it supports large
character sets in C, for example, has consequences across multiple product lines.
To this good-but-not-great beginning was added the stream classes. Of all

the notational advantages possible with C++, the stream I/O probably offers
the sexiest. It is easy to sympathize with those who put their energies into
streams even as they ignored the rest of the library. After a couple of major
revisions, the stream classes appear to be settling down.
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Complex arithmetic is another popular theme. Many people want it, it’s
not in C, and it’s largely self-contained. It is also the best candidate for a full
bore language extension. Many of the arithmetic operators in C have obvious
meaning for complex operands. You can overload lots of operators without
getting precious.
Other class libraries tend to be more ambitious. They don’t just pave over

the irregularities inherent in the C library. Instead, they aim more for the
object-oriented ideal. Hide all details of data representation. Provide cradle-
to-grave control of stored values. Create temporaries on the fly as needed.
Define a broad class of overloaded operators and implicit conversions.
Those are good design principles to follow for most classes. But they often

impose overheads that are alien to your typical C programmer. Make them a
necessary part of the C++ library and you raise the intellectual cost of migrat-
ing from C.

Standardizing C++

These are some of the issues now facing X3J16/WG21, the joint ANSI/ISO
committee standardizing C++. They have lots of issues to deal with in the
language proper. They must also decide the scope and extent of a standard
library for C++.
Part of the library specification is easy in a way, if unappealing. There

are strong pressures to keep C++ as compatible as possible with ISO C. That
means that the Standard C library will probably be included, warts and all.
To omit any significant part will seriously raise the cost of migrating code (and
programmers) from C.
Another part is harder. How much stuff beyond the Standard C library

should be thrown in the pot? Stream classes are obvious candidates, practically
shoo-ins. Complex arithmetic is also a strong contender. But what about all
the other classes people have been trying out for the past several years? The
committee will have to choose any additions wisely.
That’s not the end of the story. C itself is growing. WG14 is actively

considering a significant addition to the Standard C library. The Multibyte
Support Extension proposed by the Japanese adds numerous analogs to existing
functions for manipulating large character sets. And X3J11.1, the Numerical C
Extensions Group, is proposing still more (albeit with less clout).
Add to that the functions already set aside for future C standards. Most

important of these are probably the float and long double versions of the
math library. Pressure is growing on many vendors to broaden C’s numerical
support. Type double is no longer enough for all needs.
So X3J16/WG21 face another class of decisions. Which of the standards-

in-waiting are important enough to include in C++ from the outset? And if
they’re included, what form should they take?
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Philosophies

There is only one way to make a whole set of decisions. That is to settle on
a philosophy. The philosophy provides an underlying consistency that weaves
the decisions into a uniform fabric. A problem the C++ committee now faces
is warring philosophies. Some members view C++ as an incremental addition
to C. Others see the new language as a chance to bury the horrid older one
once and for all. Many other camps dot the broad middle ground.
One extreme approach to choosing a C++ library is minimalist. Adopt the

Standard C library because you probably have to anyway. Throw in stream
classes because they’re widely used, tried, and proven. Stop there, or as soon
as possible thereafter. The other extreme is purist. Use the C++ standard
as an opportunity to introduce a truly uniform library. Emulate SmallTalk.
Derive all library classes from a protean class. Park all the library functions as
methods within these classes. If you have to keep the Standard C library, park
it in a corner and discourage its use.
The middle ground has all sorts of stopping-off points between these ex-

tremes. You can tidy up the existing functionality a little or a lot. You can add
a little or a lot. You can emphasize efficiency or safety. All you have to do, in
any case, is convince a significant majority of the C++ community that your
choice is the best one.

A Middle Ground

I believe that the community probably wants more than the minimum. I know
that I lack the experience to identify the best balance point. I also believe that
others can profit from additional data. For all those reasons, I have undertaken
to extend the Standard C library I wrote last year. My goal then was to make
an exemplary library for C that obeyed both the spirit and the letter of the
ANSI/ISO C Standard. The extensions are to make the library compatible with
C++ and provide the missing bits. Once again, I hope to produce a library
that is exemplary in all senses of the word.
This time, however, I don’t have a standard to match. The C++ standard

is still very much in a state of flux. To some extent, I can guess where it’s
going. I can certainly track where it is on a meeting-by-meeting basis. But I
can’t say where it’s going to end up. (A not-so-secret hope, of course, is that I
can influence its eventual form in some ways.)
Some of my goals are ambitious. I am implementing float and long double

versions of all the math functions. I am also implementing the full Multibyte
Support Extension proposed by the Japanese. And, of course, I am providing
stream and complex classes.
The project will be uninteresting if all I add are C functions. That has led

me to review a number of existing class libraries and to tinker with a few of
my own. So far, the classes I am tinkering with tend mostly to smooth over
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irregularities in the functionality of the C library (existing and enhanced). They
don’t add much in the way of performance overheads.
I believe that many C programmers are attracted to C++ for its improved

notation. Overloading function names, for example, avoids the proliferation of
almost-same names that C suffers from. The string functions are an obvious
example. A handful of similar operations are performed on

• null-terminated strings (str∗)
• possibly null-terminated strings of some maximum length (strn∗)
• arbitrary strings of a given length (mem∗)
Look at all the names consumed for just this simple functionality. Then look

at all the additional names you have to add to C to supply float and long
double math functions. Toss in upwards of three flavors of complex operands
and it gets even worse. Overloading function names may be just a notational
convenience, in one sense, but it is an important one for code hygiene.
It is also important for mental hygiene. At the moment, the set of string

functions is incomplete. Their functionality is somewhat irregular. (strncpy
is a notorious example). So too are their names. Here is a place where a little
cleanup can go a long way. You can argue that the string functions are too
small a problem to be worth solving. That may be true—until you add the
Multibyte Support Extension. Now there are two types of characters and at
least six types of strings. (I’m not even counting multibyte strings, which may
or may not warrant many additional functions.)

Forward to the Past

My emphasis is on notational convenience with minimum cost in performance.
That’s a philosophy I think will be appealing to many potential C converts. It
will also be found wanting by many devotees of true object-oriented design and
programming. As a consequence, I may well change my tune by the time this
project is complete. (My goal is to have the code, and another book, complete
by the end of the year.)
I can summarize my philosophy in one sentence, though it will probably

annoy many people. I believe that an important goal for a C++ library is to
make C look more like Fortran.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group WG14, and Technical Editor of The Journal of C Language Translation.
His latest book, The Standard C Library, is available from Prentice-Hall. He
can be reached at uunet!plauger!pjp.
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28. A Strong Typing Facility for C

Jim Gimpel
Gimpel Software
3207 Hogarth Lane
Collegeville, PA 19426

Abstract

Strong typing as exemplified by the Pascal Language has the advantage
of early detection of programming errors. It has the disadvantage of
programming inflexibility. We describe in this paper how a lint-like utility
can superimpose strong typing wholly or partially on a C program through
the use of the typedef facility and in the judicious selection of appropriate
options.

Additional flexibility is obtained by means of a type hierarchy. In a
type hierarchy generic uses of a type are distinguished from, but related
to, more specific uses of a type.

Introduction

The notion of strong typing is not usually carefully defined. It generally means
the kind of type checking that Pascal has that C does not. This includes the
following:

1. User-defined types match only through the nominal type, not through the
underlying type as is done with C.

2. A special Boolean type is supported which must be used where Booleans
are expected. In C, any scalar can be used as a Boolean and any Boolean
is typed int.

3. The Pascal-equivalent of char and enum objects are not automatically
converted to and from int as is done in C. Explicit conversion is required.

4. Every array has an expected index type and every subscript must match
this type. In C, any integral-typed expression can be used as a subscript
for any array.

5. Pascal has a set facility typically implemented as a finite number of bits
that are either on or off. In C, one uses bit-wise operations on integral
quantities to achieve the same effect. C’s approach is more flexible but
Pascal sets and their members cannot be improperly mixed.

259
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In addition to these static checks, Pascal systems have run-time checks in-
cluding subscript bounds and null pointer checks. We do not include these
under the notion of strong type checking.
In the pages that follow, each of the static type checks enumerated above will

be seen to be represented as options to a lint-like processor. They are presented
as pages of the FlexeLint user manual. More information about FlexeLint can
be obtained from the author.
Strong type checking is a mixed blessing. Rigid adherence to a strong type

scheme is sometimes more trouble than it is worth. It is difficult, for example,
to write generic functions that operate on nominally different types when types
must match exactly. To provide necessary flexibility a type hierarchy scheme
has been introduced. This also is described below.

Strong Types

Have you ever gone to the trouble of typedefing types and then wondered
whether it was worth the effort? It didn’t seem like the compiler was checking
these types for strict compliance.
Consider the following typical example:

typedef int Count;
typedef int Bool;
Count n;
Bool stop;

n = stop; /* mistake but no warning */

This “mismatch” typically goes undetected by the compiler because the
compiler is required by the C standard to check only underlying types which,
in this case, are both the same (int).
The -strong option and its supplementary option -index exist to support

full or partial typedef-based type-checking. We refer to this as strong type-
checking. In addition to checking, these options have an effect on generated
prototypes. See Strong Types and Prototypes.

The -strong Option

Description of -strong

The FlexeLint syntax for this option is

-strong( [ flags ] [, name ] . . . )

This identifies each name as a strong type with properties specified by flags.
Presumably there is a later typedef defining any such name to be a type. This
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option has no effect on typedefs defined earlier. If name is omitted, then flags
specifies properties for all typedefed types that are not identified by some other
-strong option.
The possible values for flags are:

A Issue a warning upon some kind of Assignment to the strong type (e.g.,
assignment operator, return value, argument passing, initialization). A
may be followed by one or more of the following letters which soften its
meaning.

i ignore Initialization.

r ignore Return statements.

p ignore argument Passing.

a ignore the Assignment operator.

c ignore assignment of Constants.

As an example, -strong(Ai,BITS) will issue a warning whenever a value
whose type is not BITS is assigned to a variable whose type is BITS except
when the variable is being initialized. (If the strong type is a pointer then
&x, where x is a static or automatic variable, is considered a constant.)

X Check for strong typing when a value is eXtracted. This causes a warning
to be issued when a strongly typed value is assigned to a variable of
some other type (in one of the four ways described above). But note, the
softeners (i, r, p, a, c) cannot be used with X.

J Check for strong typing when a value is Joined (i.e., combined) with another
type across a binary operator. This can be softened with one or more of
the following letters:

e ignore Equality and conditional operators.

r ignore the Relational operators.

o ignore the Other binary operators.

c ignore combining with Constants.

By ‘ignoring’ we mean that no message is produced. If, for example,
Meters is a strong type then it might be appropriate to check only Equal-
ity and Relational operators and leave others alone. In this case Jo would
be appropriate.

B The type is Boolean. Normally only one name would be provided and nor-
mally this would be used in conjunction with other flags. (If through
the fortunes of using a third party library, multiple Boolean’s are thrust
upon you, make sure these are related through a type hierarchy. See Type
Hierarchies.) This flag has two effects:
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1. Every Boolean operator will be assumed, for the purpose of strong
type-checking, to return this type. The Boolean operators are those
that indicate true or false and include the relational and equality
operators, !, &&, and ||.

2. Every context expecting a Boolean, such as an if clause, while
clause, second expression of a for statement, and operands of !, ||,
and &&, will expect to see this strong type or a warning will be issued.

b This is like flag B except that it has only effect number 1 above. It does not
have effect 2. Boolean contexts do not require the type.

Flag B is quite restrictive insisting as it does that all Boolean contexts
require the indicated Boolean type. By contrast, flag b is quite permissive.
It insists on nothing by itself and serves to identify certain operators as
returning a designated Boolean type rather than an int. See also the l
flag below.

l is the Library flag. This designates that the objects of the type may be
assigned values from, or combined with, library functions (or objects) or
may be passed as arguments to library functions. The usual scenario is
that a library function is prototyped without strong types and the user is
passing in strongly typed arguments. Presumably the user has no control
over the declarations within a library. Also, this flag is necessary to get
built-in predicates such as isupper to be accepted with flag B. See the
example below.

f goes with B or b and means that bit-fields of length one should not be Boolean
(otherwise they are). See Bit-field example below.

These flags may appear in any order except that softeners for A and J must
immediately follow the letter. There is at most one B or b. If there is an f
there should also be a B or b. In general, lowercase letters reduce or soften
the strictness of the type checking whereas uppercase letters add to it. The
only exceptions are possibly b and f where it is not clear whether they add or
subtract strictness.
If no flags are provided, the type becomes a ‘strong type’ but engenders no

specific checking other than for declarations.

Examples of -strong

The option

-strong(A)

indicates that, by default, all typedef types are checked on Assignment (A) to
see that the value assigned has the same typedef type.
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The options:

-strong(A) -strong(Ac,Count)

specify that all typedef types will be checked on Assignment and constants
will be allowed to be assigned to variables of type Count.
As another example,

-strong(A) -strong(,Count)

removes strong checking for Count but leaves Assignment checking in for every-
thing else. The order of the options may be inverted. Thus

-strong(,Count) -strong(A)

is the same as above.
Consider the following:

/*lint -strong(Ab,Bool) */
typedef int Bool;

Bool gt(a,b)
int a, b;
{
if(a) return a > b; /* OK */
else return 0; /* Warning */
}

This identifies Bool as a strong type. If the flag b were not provided in
the -strong option, the result of the comparison operator in the first return
statement would not have been regarded as matching up with the type of the
function. The second return results in a warning because 0 is not a Bool type.
An option of -strong(Acb,Bool) (i.e., adding the c flag) would suppress this
warning.
We do not recommend the option c with a Boolean type. It is better to

instead use

#define False (bool) 0

return False;

Had we used an upper-case B rather than lower-case b as in:

-strong(AB,Bool)

this would have resulted in a warning that the if clause is not Boolean (variable
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a is int). Presumably we should write:

if( a != 0 ) . . .

As another example:

/*lint -strong(AJXl,STRING) */
typedef char *STRING;
STRING s;

s = malloc(20);
strcpy( s, "abc" );

Since malloc and strcpy are library routines, we would ordinarily obtain
strong type violations when assigning the value returned by malloc to a strongly
typed variable s or when passing the strongly typed s into strcpy. However,
the l flag suppresses these strong type clashes.
Strong types can be used with bit-fields. Bit-fields of length one are assumed

to be, for the purpose of strong type checking, the prevailing Boolean type if
any. If there is no prevailing Boolean type, or if the length is other than one,
then, for the purpose of strong type checking, the type is the bulk type from
which the fields are carved. Thus:

/*lint -strong(AJXb,Bool) */
/*lint -strong(AJX,BitField) */

typedef int Bool;
typedef unsigned BitField;

struct foo
{
unsigned a:1, b:2;
BitField c:1, d:2, e:3;
} x;

void f()
{
x.a = (Bool) 1; /* OK */
x.b = (Bool) 0; /* strong type violation */
x.a = 0; /* strong type violation */
x.b = 2; /* OK */
x.c = x.a; /* OK */
x.e = 1; /* strong type violation */
x.e = x.d; /* OK */
}
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In the above, members a and c are strongly typed Bool, members d and e
are typed BitField and member b is not strongly typed.
To suppress the Boolean assumption for one-bit bit-fields use the flag f

in the -strong option for the Boolean. In the example above, this would be
-strong(AJXbf,Bool).

The -index Option

Description of -index

The FlexeLint syntax for this option is

-index( [ flags ], ixtype, sitype [, sitype ] . . . )

This option is supplementary to, and can be used in conjunction with, the
-strong option. It specifies that ixtype is the exclusive index type to be used
with arrays of (or pointers to) the Strongly Indexed type sitype (or sitypes if
more than one is provided). Both the ixtype and the sitype are assumed to be
names of types subsequently defined by a typedef declaration. flags can be

c allow Constants as well as ixtype, to be used as indices.

d allow array Dimensions to be specified without using an ixtype.

Examples of -index

For example:

/*lint -index(d,Count,Temperature)
Only Count can index a Temperature */

typedef float Temperature;
typedef int Count;
Temperature t[100]; /* OK because of d flag */
Temperature *pt = t; /* pointers are also checked */

/* ... within a function */
Count i;

t[0] = t[1]; /* Warnings, no c flag */
for( i = 0; i < 100; i++ )

t[i] = 0.0; /* OK, i is a Count */
pt[1] = 2.0; /* Warning */
i = pt - t; /* OK, pt-t is a Count */
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In the above, Temperature is said to be strongly indexed and Count is said
to be a strong index.
If the d flag were not provided, then the array dimension should be cast to

the proper type as in the following:

Temperature t[ (Count) 100 ];

However, this is a little cumbersome. It is better to define the array dimen-
sion in terms of a manifest constant, as in:

#define MAX_T (Count) 100
Temperature t[MAX_T];

This has the advantage that the same MAX T can be used in the for statement
to govern the range of the for.
Note that pointers to the Strongly Indexed type (such as pt above) are also

checked when used in array notation. Indeed, whenever a value is added to a
pointer that is pointing to a strongly indexed type, the value added is checked
to make sure that it has the proper strong index.
Moreover, when strongly indexed pointers are subtracted, the resulting type

is considered to be the common Strong Index. Thus, in the example,

i = pt - t;

no warning resulted.
It is common to have parallel arrays—arrays with identical dimensions but

different types—processed with similar indices. The -index option is set up to
support this conveniently. For example, if Pressure and Voltage were types
of arrays similar to the array t of Temperature one might write:

/*lint -index(,Count,Temperature,Pressure,Voltage)*/

Temperature t[MAX_T];
Pressure p[MAX_T];
Voltage v[MAX_T];

Multidimensional Arrays

The indices into multidimensional arrays can also be checked. Just make sure
the intermediate type is an explicit typedef type. An example is Row in the
code below:
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/* Types to define and access a 25x80 Screen.
a Screen is 25 Row’s
a Row is 80 Att_Char’s */

/*lint -index(d,Row_Ix,Row)
-index(d,Col_Ix,Att_Char) */

typedef unsigned short Att_Char;
typedef Att_Char Row[80];
typedef Row Screen[25];
typedef int Row_Ix; /* Row Index */
typedef int Col_Ix; /* Column Index */

#define BLANK (Att_Char) (0x700 + ’ ’)

Screen scr;
Row_Ix row;
Col_Ix col;

void main()
{
int i = 0;

scr[row][col] = BLANK; /* OK */
scr[ i ][col] = BLANK; /* Warning */
scr[col][row] = BLANK; /* Two Warnings */
}

In the above, we have defined a Screen to be an array of Rows. Using an
intermediate type does not change the configuration of the array in memory.
Other than for type checking, it is the same as if we had written:

typedef Att_Char Screen[25][80];

Type Hierarchies

A discovery that was made only after the first version of strong typing was
implemented was that some sort of type hierarchy was needed.

The Need for a Type Hierarchy

Consider a Flags type which supports the setting and testing of individual bits
within a word. An application might need several different such types. For
example, one might write:



268 The Journal of C Language Translation – March, 1992

typedef unsigned Flags1;
typedef unsigned Flags2;
typedef unsigned Flags3;

#define A_FLAG (Flags1) 1
#define B_FLAG (Flags2) 1
#define C_FLAG (Flags3) 1

Then, with strong typing, an A FLAG can be used with only a Flags1 type,
a B FLAG can be used with only a Flags2 type, and a C FLAG can be used with
only a Flags3 type. This, of course, is just an example. Normally there would
be many more constants of each Flags type.
What frequently happens, however, is that some generic routines exist to

deal with Flags in general. For example, you may have a stack facility that
will contain routines to push and pop Flags. Or you might have a routine to
print Flags (given some table that is provided as an argument to give string
descriptions of individual bits).
Although you could cast the Flags types to and from another more generic

type, the practice is not to be recommended, except as a last resort. Not only
is a cast unsightly, it is hazardous since it suspends type-checking completely.

The Natural Type Hierarchy

The solution is to use a type hierarchy. Define a generic type called Flags and
define all the other Flags in terms of it:

typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;
typedef Flags Flags3;

In this case Flags1 can be combined freely with Flags, but not with Flags2
or with Flags3.
This depends, however, on the state of the fhs (Hierarchy of Strong types)

flag which is normally ON. If you turn it off with the -fhs option, the natural
hierarchy is not formed.
We say that Flags is a parent type to each of Flags1, Flags2 and Flags3

which are its children. Being a parent to a child type is similar to being a base
type to a derived type in an object-oriented system with one very important
difference. A parent is interchangeable with each of its children; a parent can
be assigned to a child and a child can be assigned to a parent. But a base type
is a subset of a derived type and assignment can go only one way.
A generic Flags type can be useful for all sorts of things, such as a generic

zero value, as the following example shows:
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/*lint -strong(AJX) */
typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;
#define FZERO (Flags) 0
#define F_ONE (Flags) 1

void m()
{
Flags1 f1 = FZERO; /* OK */
Flags2 f2;

f2 = f1; /* Warn */
if(f1 & f2) /* Warn */

f2 = f2 | F_ONE; /* OK */
f2 = F_ONE | f2; /* OK */
f2 = F_ONE | f1; /* Warn */
}

Note that the type of a binary operator is the type of the most restrictive
type of the type hierarchy (i.e., the child rather than the parent). Thus, in the
last example above, when a Flags ORs with a Flags1 the result is a Flags1
which clashes with the Flags2.
Type hierarchies can be an arbitrary number of levels deep.
There is evidence that type hierarchies are being built by programmers even

in the absence of strong type-checking. For example, the header for Microsoft’s
Windows development kit, windows.h, contains the following extract:

typedef unsigned int WORD;
typedef WORD ATOM;
typedef WORD HANDLE;
typedef HANDLE HWND;
typedef HANDLE GLOBALHANDLE;
typedef HANDLE LOCALHANDLE;
typedef HANDLE HSTR;
typedef HANDLE HICON;
typedef HANDLE HDC;
typedef HANDLE HMENU;
typedef HANDLE HPEN;
typedef HANDLE HFONT;
typedef HANDLE HBRUSH;
typedef HANDLE HBITMAP;
typedef HANDLE HCURSOR;
typedef HANDLE HRGN;
typedef HANDLE HPALETTE;
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Adding to the Natural Hierarchy

The strong type hierarchy tree that is naturally constructed via typedefs has a
limitation. All the types in a single tree must be the same underlying type. The
-parent option can be used to supplement (or completely replace) the strong
type hierarchy established via typedefs.
An option of the form:

-parent( Parent, Child [, Child ] . . . )

where Parent and Child are type names defined via typedef, will create a link
in the strong type hierarchy between the Parent and each of the Child types.
The Parent is considered to be equivalent to each Child for the purpose of
Strong type matching. The types need not be the same underlying type and
normal checking between the types is unchanged. A link that would form a
loop in the tree is not be permitted.
Given the options:

-parent(Flags1,Small)
-strong(AJX)

and the following code:

typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;
typedef unsigned char Small;

then the following type hierarchy is established:

Flags
/ \

Flags1 Flags2
|

Small

If an object of type Small is assigned to a variable of type Flags1 or Flags,
no strong type violation will be reported. Conversely, if an object of type Flags
or Flags1 is assigned to type Small, no strong type violation will be reported
but a loss of precision message will still be issued (unless otherwise inhibited)
because normal type checking is not suspended.
A visual picture of the hierarchy tree can be obtained using the letter h in

connection with the -v option.
If the -fhs option is set (turning off the hierarchy of strong types flag)

typedefs will not add hierarchical links. The only links that will be formed
will be via the -parent option.
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Hints on Strong Typing

1. Beware of excessive casting. If, in order to pull off a system of strong
typing you need to cast just about every access, you are missing the
point. The casts will inhibit even ordinary checking, which has consider-
able value. Remember, strong type-checking is gold, normal type-checking
is silver, and casting is brass.

2. Rather than cast, use type hierarchies. For example:

/*lint -strong(AXJ,Tight) -strong(,Loose) */
typedef int Tight;
typedef Tight Loose;

Tight has a maximal amount of Strong Type checking; Loose has none.
Since Loose is defined in terms of Tight the two types are interchangeable
from the standpoint of Strong Type checking. Presumably you work with
Tight ints most of the time. Loose is used when absolutely necessary to
achieve some effect.

3. A time when it is really good to cast is to endow some otherwise neutral
constant with a special type. FZERO of the previous section is an example.

4. For large, mature projects, add strong typing slowly, working on one
family of strong types at a time. A family of strong types is one hierarchy
structure.

5. Don’t bother making pointers to functions strong types. For example:

typedef int (*Func_Ptr)(void);

If you make Func Ptr strong, you’re not likely to get much more checking
than if you didn’t make it strong. The problem is that you would then
have to cast any existing function name when assigning to such a pointer.
This represents a net loss of type-checking (remember: gold, silver, brass).

6. Rather than making a pointer a strong type, make the base type a strong
type. For example:

typedef char TEXT;
typedef TEXT *STRING;

TEXT buffer[100];
STRING s;

It may seem wise to strong type both STRING and TEXT. This would be a
mistake since whenever you assign buffer to s, for example, you would
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have to cast. But note that -strong(Ac, STRING) would allow the as-
signment. It is usually better to strong type just TEXT. Then when buffer
is assigned to s the indirect object TEXT is strongly checked and no cast
is needed.

This holds for structures as well as for scalars. For example, in MS Win-
dows programming there are a number of typedefed types that are point-
ers. Examples include: LPRECT, LPLOGFONT, LPMSG, LPSTR, LPWNDCLASS,
etc. If you make these -strong(A) you will have problems passing to
Windows functions addresses of Window’s structs. At most make them
-strong(AcX).

7. Care is needed in declaring strong self-referential structs. The usual
method, i.e.,

typedef struct list { struct list * next ; . . . }
LIST;

is incompatible with making LIST a strong type because its member next
will not be a pointer to a strong type. It is better to use

typedef struct list LIST;
struct list { LIST * next; . . . };

This is explicitly sanctioned in ANSI C (§3.5.2.3) and will make next
compatible with other pointers to LIST.

Reference Information

Strong Expressions

An expression is strongly typed if it is

1. a strongly typed variable, function, array, or member of union or struct
or an indirectly referenced pointer to a strong type.

2. a cast to some strong type.

3. one of the type-propagating unary operators (such as +, -, ++, --, and ~)
applied to a strongly typed expression.

4. formed by one of the balance and propagate binary operators applied to
two strongly typed expressions (having the same strong type). The bal-
ance and propagate operators consist of +, -, *, /, %, &, |, ^), and ?:.

5. a shift operator whose left side is a strong type.
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6. a comma operator whose right side is a strong type.

7. an assignment operator whose left side is a strong type.

8. a Boolean operator and some type has been designated as Boolean (with
a b or B flag in the -strong option). The Boolean operators consist of
the relational, equality, and logical operators.

General Information

When the option

-strong( [ flags ] [, name ] . . . )

is processed, name and flags are entered into a so-called Strong Table created
for this purpose.
If there is no name, then a variable, Default Flags, is set to the flags pro-

vided. When a subsequent typedef is encountered within the code, the Strong
Table is consulted first. If the typedef name is not found, the Default Flags
are used. These flags become the identifying flags for strong typing purposes
for the type.
The option

-index( [ flags ], ixtype, sitype [, . . . ] )

is treated similarly. Each sitype is entered into the Strong Table (if not already
there) and its index flags ORed with other strong flags in the table. A pointer
is established from sitype to ixtype which is another entry in the Strong Table.
For these reasons it does not, in general, matter in what order the -strong

options are placed other than that they be placed before the associated typedef.
There should be at most one option that specifies Default Flags.

Strong Types and Prototypes

If you are producing prototypes with some variation of the -od option (Output
Declarations), and if you want to see the typedef types rather than the raw
types, just make sure that the relevant typedef types are strong. You can make
them all strong with a single option: -strong(). Since you have not specified
A, J, or X you will not receive messages owing to strong type mismatches for
Assigning, Joining or eXtraction. However, you may get them for declarations.
Another option

-etd(strong)

is available to inhibit any such messages.
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Final Comments

The hierarchy of strong types compels one to compare this hierarchy with the
object-oriented hierarchy of C++ and other languages. If one closely examines
the phrase “code reusability” touted as a property of OOP, one finds that
it refers to the fact that one can write generic functions (i.e., functions that
operate on more than just one struct type). The way that one can do this
in C is by passing pointers to a function expecting a void pointer and hoping
that all structs passed this way are compatible. With strict type checking
(without hierarchies) you cannot do it at all. So perhaps it is now a little
clearer why code reusability is such a puzzle to C programmers. With a loosely
typed language such as C, code reusability was something you did not have to
work very hard for. In the past, when C code would mix pointers and ints
freely, code reusability had always been a fact of life. Coming from Pascal or
Ada, however, OOP really does provide for the writing of generic functions.
One may speculate that C’s general success over Pascal may be attributed in
part to its greater code reusability. For C, OOP provides not reuse but type
checking.
Viewed in this way the strong type hierarchies described in this paper serve

the same purpose for scalars as the OOP hierarchies do for structs. Indeed, it is
possible to advantageously mimic an OOP structure hierarchy. For each struct
one could have an associated void pointer and arrange these in a hierarchy. For
example:

typedef void *vShape;
typedef vShape vCircle;
typedef vShape vSquare;

With these as strong types a server routine accepting vShapes as arguments
could accept vCircles and vShapes as well. The strong type facility would
check types and keep them in line. Many of the benefits of object-orientedness
would result with one additional bonus. The server routines alone would know
or care about the internal structure of a Shape, Circle or Square. This would
also reduce the number of headers needing to be included.

Jim Gimpel is founder and President of Gimpel Software, a firm specializing
in tools for C programmers. He has been the leading architect in the develop-
ment of C-terp, BASTOC, PC-lint, FlexeLint, and the C Shroud. He can be
reached at (215) 584-4261.
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29. Electronic Survey Number 11

Compiled by Rex Jaeschke

Introduction

Occasionally, I conduct polls via electronic mail and publish the results. (Those
polled also receive an E-mail report on the results.)
The following questions were posed to about 80 people, with 17 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Diagnostic/Message Levels

What levels of user diagnostics/messages do you support and what level is on
by default? Can the programmer select levels?

• 4 – Compiler fatal
• 16 – User error
• 11 – User warning
• 8 – Comments/information
• 5 – Extension
• Comments:

1. The user can select the warning message level using the command-
line option -Wnum.

– If num is 0, no warning messages are issued.
– If num is 1, most warning messages are issued (this is the default
value).

– If num is 2, more warning messages are issued, including use
of functions with no declared return type, failure to put return
statements in functions with non-void return types, and data
conversions that would cause loss of data or precision.
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– If num is 3, all of the above warning messages are issued, along
with warnings about any non-ANSI features and extended key-
words and function calls before the appearance of function pro-
totypes in the program.

This option does not affect compiler error message output.
The option -WX causes all warnings to be fatal. It can be used in
combination with -W0, -W1, -W2, or -W3.

2. We have four levels of user-selectable message generation:

0 – undefined behavior, warning (default)
1 – syntax or constraint error, recoverable
2 – syntax or constraint error, fatal
3 – implementation limit, fatal

The user can independently choose the warning level and the “fatal”
level (so they could abort on a level 0 warning, if they want).
I should point out that our compiler does not generate comments and
cautions for code such as if (a = b) or the statement a == b + c;.
Our compilers do provide command line switches to relax the ANSI
rules for various types of declarations, and for K&R compatibility.
These options tend to change the warnings issued.

3. Just one level. This is an interactive environment in which the first
error ends compilation.

4. There are three levels of warning which may be selected with a com-
mand line option:

0 – errors only
1 – add regular warnings (default)
2 – add warnings about old-fashioned (pre-ANSI) stuff
3 – add portability warnings (extensions)

5. We have had requests for selectively deleting particular warnings.

6. We have three major levels: error, warning, compiler error. Within
warnings we distinguish between “usage” and “conformance.” The
former category is used to indicate legal constructs that are in some
way dubious. The later are used to indicate illegal constructs that we
accept. By default all messages are issued. The user can selectively
disable all warnings or only one of the subcategories. We also have
several categories we use internally that get mapped to one of the
above (e.g., a “not implemented” becomes an error) with a slightly
cryptic indication in the message. We have several different com-
pilation modes (K&R, Strict ANSI, Extended ANSI, Strict C++,
Cfront compatible C++) and many messages are mapped differently
depending on the mode. For example, many conformance warnings
are only issued in the Strict modes.
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7. There are ten levels. There can be multiple levels associated with
each error. The default is to select the lowest level. This behavior
can be changed to select the highest level, or even cut off levels below
a certain point.

8. I separately allow for selective enable/disable on each distinct mes-
sage the compiler issues.

9. Diagnostics come in three flavors: internal, error, and warning. Mes-
sages of the first type are not supposed to occur. The second even-
tually causes the compile to fail. The third type does not cause a
compile failure, no matter how many are issued. Certain warnings
are not always enabled. Extension versus other is covered by the
text of the message. In my opinion, a compiler’s job is to do its best
to compile the program, not to nag about code that’s borderline.

Array Bounds Checking

Do you support any form of execution-time bounds checking for array refer-
ences? Pointer dereferences?

• 1 – Yes
• 15 – No
• Comments:

1. Not currently but there are hooks for the capability, however, at least
for storage whose array bounds are known.

2. Not currently. We had plans for such a feature but haven’t imple-
mented anything yet.

3. Yes for both arrays and pointers. It is very hard to do the job
properly.

4. Comprehensive bounds checking presents an interface compatibility
problem for pre-compiled libraries. Carrying dynamic bounds infor-
mation with each stored pointer means the libraries have to know
about the bounds data.

5. No. Too costly. Moreover, what could be done when a free-standing
program violates a bound?
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sig atomic t

Is the following code fragment standard-conforming?

#include <signal.h>

volatile sig_atomic_t var;

Specifically, can an implementor include the qualifier volatile in the type-
def for sig atomic t? Must an implementor include the qualifier volatile in
the typedef for sig atomic t? If the typedef includes it the programmer can’t
also use it since that would result in a constraint violation. If it is not included,
the programmer needs to use it.
§4.7 (pp 121 line 6) of the ANSI C Standard says that sig atomic t “is the

integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchronous interrupts.” The Rationale document §2.2.3 (pp 17–
18) seems to imply that sig atomic t is volatile-qualified. However, the
standard in §4.7.1.1 (pp 122 line 15–16) talks about a variable of type volatile
sig atomic t.

• 13 – The Standard is quite clear—The user must supply the volatile
and the implementor should not.

• 2 – Confused.
• Comments:

1. The standard says that sig atomic t is a type, not a qualified
type. Similarly, a misguided implementer can include volatile in
the size t typedef! Nothing in the C Standard prohibits misusing
volatile in this way.

2. I agree this definition is weak. What comes to mind is processors
which have special instructions to lock the bus for access to any size
type, and a compiler which uses locking instructions for access to any
volatile object. In this environment, sig atomic t really doesn’t
have any meaning. However I don’t think that this is the intent of
either volatile or sig atomic t. I read sig atomic t as the type
which the processor can access with a single bus access (excluding
multi-bus-access types).

3. In my opinion, §4.7.1.1 is definitive. §4.7 could have been worded
more clearly, but does not necessarily contradict it. The Rationale
is not part of the Standard.

4. My reading is that the standard doesn’t say one way or another
whether sig atomic t is volatile. So the above is conforming, but
not strictly conforming.
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5. Regarding “Can an implementor include the qualifier volatile in
the typedef for sig atomic t,” the standard gives requirements that
must be met. It does not define implementation.

6. Unless the Standard specifies that a given type is qualified, it is not.
Qualifying a typedef is a poor practice anyway; it just restricts the
ways you can declare objects. I think the text in §4.7.1.1 makes
it very clear that sig atomic t is not volatile-qualified. Other-
wise it would be suggesting a constraint-violation as the only way to
accomplish something.

7. The Rationale seems to be misleading. When the Standard is read
alone, there is no doubt. The type sig atomic t is an atomically ac-
cessed integer type. Whether to qualify this type by volatile must
be the choice of the programmer. The implementation should not
prevent it. (Although an implementation might add extra semantics
behind the application’s back for sig atomic t objects.) The quali-
fication by volatile of a sig atomic t object is only appropriate if
it is going to be modified outside of the program’s normal execution
path.

Translation Limits

How do you handle the translation limits of §2.2.4.1? Do you special-case each
one, use a table lookup for checking and diagnostics, or what?

• 9 – Special case.
• Comments:

1. Everything is allocated dynamically.

2. We special-case each one, issue a warning when the limit specified
in the standard is reached (if in standard conformance mode), and
then avoid any kind of limit, or increase the limit significantly over
the standard limit.

Type-Safe Linkage Support

Do you support type-safe linking (ala C++ or similar) across translation units?

• 1 – Yes
• 14 – No
• Comments:

1. No, but something along this line is in our future.
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2. Our programming environment provides messages about conflicts,
but the compiler proper doesn’t detect this.

3. Yes. We also do “quick” type checking via a 32-bit checksum.

Bit-Field Types

What types can be used in bit-field declarations beyond int, signed int, and
unsigned int?

• 4 – Just the standard ones
• 1 – Standard ones plus short
• 3 – Standard ones plus char, short, and int

• 6 – Any integer type (including enums)
• 1 – Other
• Comments:

1. Any non-floating scalar type (including pointers), and structure types
whose fields are all bit-fields themselves and whose size is less than
sizeof(int).

2. The real question is how the different base types affect the way that
bit-fields are allocated (and whether they are even accepted). Our
implementation disallows bit-field widths that are longer than their
base size. If there are enough bits left in an appropriately aligned
object of the base size to permit the bit-field to fit, the space is
allocated. Otherwise, the entire bit-field is allocated from the next
appropriately aligned object of the base type. Whether the allocation
is low-to-high or high-to-low depends on the target machine.

∞



30. Massively Parallel C: Data-Parallel Execution

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

Abstract

Data-parallel execution permits operators to manipulate data-parallel ob-
jects. Data-parallel execution is a natural programming style on many
massively parallel platforms. In many languages these parallel data ob-
jects are arrays. The fact that Standard C does not support arrays as
first-class objects has motivated some vendors to invent new object types
that are similar to arrays but are first-class objects. First-class arrays
introduce many other features into the language.

Introduction

Numerous proposals have been submitted to the Numerical C Extensions Group
(NCEG) that introduce data-parallel execution into Standard C. The following
is a partial list of features present in various proposals:

• Fortran-90 style of array syntax, a[1:n:2] = b[:] + c[:];

• functional notation, VecAsgn(a,1,n,2,VecAdd(b,m,n,1,c));
• vector statements, vector (n/2) a[2*^] = b[^] + c[^];

• selector index, at[i:;][j:;] = a[j][i]; /* transpose */

• circular pointers, char * circ cp;

• masked element selection, object[$circle] = blue;

• parallel objects, shape [2][32768] twoD; int:twoD parobj;

• a bit type
Although the number of widely-varying proposals has made it difficult to

converge on a single proposal, it does show that there is considerable interest
in such a feature. Each champion of a particular proposal has his own prime
motivation, but there is a common set of goals. One such goal is to provide
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additional expressiveness. Many numerical applications would benefit from the
ability to express vector algorithms in a style that is closer to the mathematical
notation. Another common goal is to provide constructs that map more easily
onto state-of-the-art parallel hardware. Vector-oriented features appear to offer
a realistic solution for both the programmer and the implementor. Since there
are many platforms that do not support parallel execution, it is important
to ensure that any new data-parallel features also map onto existing serial
environments.
The following is a look at the issues involved with adding data-parallel

semantics to C. Two proposals are contrasted: C*1 and what is referred to as
the [:] (pronounced “square bracket colon”) approach. Comparing these two
proposals will expose the issues that the NCEG subcommittee struggle with at
each meeting. An examination of the issues helps with the process of deciding
which features are most useful, which features are flawed, and which features
are too complicated.

The Trouble with C Arrays

The need for some new syntax becomes apparent when the behavior of C arrays
is compared to Fortran-90 arrays. Consider the following Fortran-90 array
syntax example:

SUBROUTINE ADD_ARRAYS()
COMMON /ARRAYS/ A(1000), B(1000), C(1000)

A = B + C
RETURN
END

and compare it to the following, seemingly identical, C example (assume some
analogous array syntax exists in C):

float a[1000], b[1000], c[1000];
void add_arrays() {

a = b + c;
}

The problems associated with extending Standard C arrays such that they
behave like Fortran-90 arrays become apparent. The majority of the problems
are there because C arrays are not first-class objects. §3.2.2.1 of the ANSI C
Standard states:

“Except when it is the operand of the sizeof operator, the unary
& operator, the ++ operator, the -- operator, or the left operand of

1C* is a registered trademark of Thinking Machines Corporation.
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the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated
object (and is no longer an lvalue).”

However, for arrays the Standard states:

“Except when it is the operand of the sizeof operator or the unary
& operator, . . . an lvalue that has type ‘array of type’ is converted
to an expression that has type ‘pointer to type’ that points to the
initial element of the array object and is not an lvalue.”

New syntax is needed because a can never be assigned to, and arrays are
converted into pointer expressions that point to the first array element. There
is no palatable upward-compatible way to turn C arrays into first class objects
without adding new syntax.

The [:] Approach

One proposal introduces syntax that overloads the subscript operator. The idea
is that the token sequences [:] and [::] are used to designate an array section
that describes a mapping of a previously allocated set of array elements. The
array syntax example becomes:

float a[1000], b[1000], c[1000];
void add_arrays() {

a[:] = b[:] + c[:];
}

and the [:] syntax is used to describe a mapping that maps corresponding
elements of entire arrays onto data-parallel operations.
Another array syntax variation uses [;] in place of [:] with slightly dif-

ferent semantics, but essentially equivalent functionality. (This approach is one
that I pursued in one of my proposals.) The primary difference between the two
approaches is the array subsection semantics. Both approaches permit array
subsections, but the [:] approach uses initial index and final index specifiers,
while the [;] approach uses initial index and length specifiers. There are other
proposals that recommend using both. With the [;] approach the following
mappings occur:

double a[12];
a[0 ;12] /* specifies the entire array */
a[0 ; 6 ; 2] /* the even elements of the array */
a[11; 4 ;-3] /* every 3rd element starting with

last element going backwards */

and with the [:] approach the following mappings occur:
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double a[12];
a[0 : 11] /* specifies the entire array */
a[0 : 11 : 2] /* the even elements of the array */
a[11: 0 :-3] /* every 3rd element starting with

last element going backwards */

There are advantages and disadvantages to both approaches. The [:] syn-
tax is used throughout the rest of this document. The following example shows
how sub-sectioning can be used to compute the sum of an array of integers in
O(log n) time.

#include <stdio.h>

#define M 8
#define N (1<<M) /* 2**M */

extern int a[N];

void sum_array() {
int i, j, k;

for (i = 1; i <= M; i++) {
k = (1 << i); /* 2**i */
j = k - 1; /* 2**i - 1 */
a[j:N-1:k] += a[j-k/2:N-1:k];

}
printf("sum = %d\n", a[N-1]); /* last element */

/* holds the sum */
}

For simplicity, this algorithm assumes that the number of elements in array
a is an integral power of two.
The [:] approach permits a wide variety of data-parallel expressions, in-

cluding vector valued expressions such as a[ix[:]]. However, it does not in-
troduce arrays as first-class objects but, rather, introduces a way of mapping
into arrays. That is, we still must use something artificial like

a[] = b[] + c[]; instead of the more intuitive a = b + c;

when whole array references are desired. There is no way to declare a func-
tion that accepts whole array arguments or return whole array values. Many
important functions—such as math functions like sin, cos, sqrt, and pow—
cannot be used with this array syntax proposal. Finally, many useful vector
operations were never defined. These include sum reduction, transpose, matrix
multiply, max, min, and shifting operations. A complete array syntax feature
would make C a significantly larger and more complicated language.
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C* and Parallel Variables

C* introduces the concept of parallel objects into C (along with many other
features). Parallel objects share many of the same characteristics with C arrays,
but there is one major difference—they are never implicitly converted to a
pointer to the first element. Therefore, operations such as storing the address
of the first element in a pointer, and incrementing that pointer a given number
of times, do not produce predictable results. There is no way to use a pointer
to walk through the elements of a parallel object in a predictable fashion. This
is because the parallel object can be distributed across a network.
C* contains the keyword shape that specifies the shape of a parallel vari-

able. A shape must be declared before a parallel variable of that shape can be
declared.

shape [256][256]A_shape;
int:A_shape p1, p2, p3;

This example declares three parallel variables p1, p2, and p3, each of which
has two dimensions (rank 2), with 256 elements in each dimension (their ex-
tents). Before parallel operations can be applied to parallel objects, the correct
shape must be selected by using the with statement. In general, parallel vari-
ables referenced inside a with block must have the same shape as the shape-
specifier on the with statement. The following example demonstrates the usage
of the with statement.

sum = 0;

with (A_shape) {
/*1*/ p1 = 1;
/*2*/ p2 = 2;
/*3*/ p3 = p1 + p2;
/*4*/ printf("[1][2]p3 = %d\n", [1][2]p3);
/*5*/ sum += p3;
}

Statement 1 assigns the value 1 to each element of parallel variable p1.
Statement 2 assigns the value 2 to each element of parallel variable p2. State-
ment 3 adds elements of p1 to corresponding elements of p2 and stores the sums
in corresponding elements of p3. Statement 4 uses the left-indexing feature to
reference individual elements of parallel variables. An individual element such
as [1][2]p3 can be referenced by placing the subscript operators on left side of
the parallel variable. From the programmer’s point of view, this is conceptually
identical to referencing an array element such as: a[1][2]. Statement 5 uses
the += operator as an assignment reduction operator. That is, all the elements
of parallel variable p3 are added together and that result is added to the value
of the scalar variable sum, and the result is stored in sum.
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C* supports declarations of arrays of parallel objects also. In the following
example:

int:A_shape apv[8];

apv is an array of parallel objects in that each element of apv is a parallel
object. Parallel elements can be referenced in expressions such as:

apv[1] = apv[2] * apv[3]; /* parallel operations */

and scalar elements can be referenced in expressions such as:

[i][j]apv[1] = [i][j]apv[2]; /* scalar operations */

Parallel objects can be thought of as having one or more parallel dimensions
and arrays of parallel objects have both serial and parallel dimensions. The
programmer can tell which dimensions are intended to execute in parallel and
which must execute serially by looking at the declaration.

Active and Inactive Elements

The keyword where is used to control which elements in a parallel variable are
operated on (active), and which ones are left alone (inactive).

with (A_shape) {
where (p3 != 0)

p1 = p2 / p3;
else

p1 = 0;
}

There is also an everywhere statement that overrides the current active
set of a where statement and makes all elements active. It is possible to loop
until no more elements are active by using the unary |= reduction operator as
follows:

with (A_shape) {
while (|= (p1 > 0))

where (p1 > 0)
--p1;

}

Another way of controlling which elements are active is by using the ||, &&,
and ?: operators. The following statement:
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p3 = (p1 > 5) && (p2++)

is equivalent to:

where (p1 > 5)
p2++

When these operators have parallel variables as operands they are not true
short circuit operators. Instead one operand controls access to corresponding
elements.

Interprocessor Communication

Since C* was developed to run on a distributed memory machine, serial and
parallel objects also describe data layout. Parallel objects are distributed and
serial objects are not. Since references to parallel variables must appear inside
a with statement, interprocessor communication can be kept to a minimum.
However, vector-valued subscript expressions do cause interprocessor commu-
nication to occur. A “get” operation with parallel variables is accomplished by
a statement like the following:

target = [index]source;

and a send operation by:

[index]target = source;

These are called parallel left index operations. Another use of the parallel
left index operations is to reshape a parallel variable. That is, if parallel variable
index is two dimensional, then the result of left indexing a one-dimensional
parallel variable with index is a two-dimensional parallel value.

shape [64][64]A_shape;
int:A_shape p4, p5;
shape [16384]B_shape;
int:B_shape p6;

with (A_shape)
p5 = [p4]p6;

The expression [p4]p6 conforms to the shape A shape that is the shape-
specifier in the controlling with statement. The parallel variable p4 reshapes
parallel variable p6 into the shape of p4.
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Functions

C* allows parallel variables to be passed as arguments and returned from func-
tions as first-class objects. Finally, C* permits user-defined function overload-
ing. This allows a function with the same name to operate on scalar and parallel
data. The keyword overload specifies names of functions to be overloaded.

Evaluation of C*

C* fulfills the goal of adding a first-class data-parallel object to C in a largely
upward-compatible way. C* supports first-class data-parallel objects by over-
loading existing C operators, introducing reduction operators that are spelled
the same as the unary assignment operators, and by adding some new opera-
tors like max >?= and min <?=. User-defined overloaded functions allow parallel
and serial functions to have the same interface. It is certainly possible to write
highly parallel applications with C*. No language is perfect and this is true
with C* also. There are a number of issues that need to be raised.
C* does not permit array subsections to be specified. A statement such as:

[0:n:2]p1 = [1:n:2]p2;

is not accommodated. There are applications that are easier to write if ghost
borders are declared around the edges of the parallel object. Access to the
actual object is easily specified by:

x[1:N-2][1:N-2]

if array subsections are permitted.
C++ would have a difficult time adding left indexing because there appears

to be no straightforward way to add operator overloading. It would be too
easily confused with right indexing.
The left-indexing notation allows for easy recognition of parallel dimensions

but makes it difficult to interchange parallel dimensions with serial dimensions.
Interchanging a parallel dimension and serial dimension could force the pro-
grammer to manually change all [i][j]apv[k] expressions to another form
such as [i][k]apv[j]. There is some loss of type richness in that it is possible
to declare an array of parallel objects but it is not possible to declare a parallel
variable whose elements are arrays.
One of the goals for an array syntax was to increase its expressiveness by

allowing vector constructs. C* limits vector expressiveness to parallel dimen-
sions. From a pure expressiveness point of view, it seems desirable to be able
to use data-parallel syntax on any dimension—serial or parallel.
The with statement is too limiting. Since data-parallel operations can only

occur inside a with statement, there is no way to call a function with two



Massively Parallel C: Data-Parallel Execution – MacDonald 289

arguments of different shapes. It is quite convenient to be able to have array
arguments that have different rank and extents.
The sequence needed to loop until every element reaches some condition

seems awkward.

with (A_shape) {
while (|= (p1 > 0))

where (p1 > 0)
--p1;

}

It seems unnecessary to have to specify the condition (p1 > 0) twice. The
natural way to code this is:

while (p1 > 0)
--p1;

which seems more understandable and straightforward.
Finally, the new reduction operators do not behave the same as the tradi-

tional C operators with the same spelling. For example:

s1 -= p2;

is equivalent to:

s1 = s1 - (+= p2);

instead of the more traditional:

s1 = s1 - p2;

Finally, C* adds too many new keywords. (Some are: with, where, shape,
shapeof, rankof, positionsof, physical, overload, everywhere, current,
bool, and boolsizeof.)
Although, there are issues raised with C*, it is a complete language that

addresses many of the data-parallel issues that NCEG is trying to address. I
doubt that C* could become a future standard in its present form even though
it contains many good ideas.

Conclusions

Data-parallel languages like Fortran-90 and C* permit programmers to declare
data-parallel objects. In Fortran-90, arrays can be used as data parallel objects
while C* adds an additional feature to Standard C called parallel variables.
Both Fortran-90 and C* are huge languages when compared to C. When I
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look at the number of features that need to be included to fully support array
syntax, I question the wisdom of putting such features in C. The biggest issue
is user-defined function overloading. Is the language still C if it contains this
feature or has it moved too far into the domain of C++?
Another issue is passing array arguments by value to functions and returning

array values from functions. Such a feature encourages additional features like
the reference parameter feature of C++.
Should some of the standard library functions like sin and cos be turned

into generic intrinsic functions that accept arbitrary array arguments and return
arbitrary array results? This is far more palatable than user-defined overloaded
functions but needs close examination.
It is difficult to turn away from array syntax because so many have expressed

a desire for such a feature. Data-parallel execution on massively parallel ma-
chines offers a natural programming style. The reason the NCEG array syntax
subcommittee is struggling with this feature is because their goal of providing
a first-class array object in C carries a great deal of baggage along with it. I
doubt a feature that extensive can be successfully integrated into C. Perhaps a
new language is needed or we need to compromise on the extent of the feature.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is the Cray Research Inc representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI C standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 683-5818, tam@cray.com, or
uunet!cray!tam.
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31. Pragmania

Rex Jaeschke

[Ed: The following information is reprinted with permission from Hewlett-
Packard. This material is extracted from their manual HP C, and is copyright
c© 1991 by Hewlett-Packard. Except for minor editorial changes, the material
presented here is taken verbatim from the above-mentioned manual.]

You can include the following pragmas within a source file. They may not
be used within a function, however. A pragma has effect from the point at
which it is specified to the end of the translation unit (or until another pragma
changes its status).

Optimization Pragmas

This section lists pragmas that affect how optimization is done.

#pragma OPTIMIZE ON | OFF

This pragma turns optimization ON or OFF depending on which option you
use.

#pragma OPT_LEVEL 1 | 2

An argument of 1 sets the optimization level to local. An argument of 2
sets the optimization level to global and local.

Shared Library Pragma

This section describes the pragma for assigning a version number to a shared
library module.

#pragma HP_SHLIB_VERSION "mm/[yy]yy"

This assigns a version number to a shared library module. This enables you
to store multiple versions of a subroutine in a shared library.
The version number is specified by mm/[yy]yy. mm represents the month,

and must be in the range 1–12. [yy]yy represents the year, either in 2 or 4 digits.
If the 2 digit form is used it must be in the range 90–99 and will be interpreted
as 1990–1999. The 4 digit form must be in the range 1990–7450.
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This pragma provides a way to guard against unexpected side-effects when
a shared library is updated. You can put multiple versions of a routine in
the library and ensure that programs use the correct version. The date in the
SHLIB VERSION pragma provides the version number. Programs call the version
in the shared library with a date less than or equal to the date the program
was linked.
The version number should only be incremented when changes made to a

subroutine make the new version of the subroutine incompatible with previous
versions.

Data-Alignment Pragma

This section discusses the data-alignment pragma HP ALIGN and its various ar-
guments available on the HP 9000 Series 600, 700, and 800, to control alignment
across platforms.

#pragma HP_ALIGN alignment

alignment can be one of a number of target machine names or POP. POP removes
any HP ALIGN settings and reverts back to the native alignment for the host
machine. This pragma takes effect from its placement point until a subsequent
encounter of the HP ALIGN pragma.

Listing Pragmas

The following listing pragmas are available:

#pragma LINES linenum

This sets the number of lines per page to linenum. The default is 63. The
minimum number of lines per page is 20.

#pragma WIDTH pagewidth

This sets the width of the page to pagewidth. The default is 80 columns.
The minimum number of columns per page is 50. Place the WIDTH pragma
before any TITLE or SUBTITLE pragmas. The width of the title and subtitle
fields varies with the page width.

#pragma TITLE "string"

This makes string the title of the listing. string can have a length of up
to 44 characters less than the page width (additional characters are truncated
with no warning). The default is no title.
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#pragma SUBTITLE "string"

This directive makes string the subtitle of the listing. string can have a
length of up to 44 characters less than the page width (additional characters
are truncated with no warning). The default is no subtitle.

#pragma PAGE

This causes a page break and begins a new page.

#pragma LIST ON | OFF

This turns listing functionality ON or OFF when used with the -Wc,-L com-
mand line option. The default is ON. Use this pragma to exclude source lines
you do not need to list such as headers.

#pragma AUTOPAGE ON | OFF

This directive is used to produce a page break after each function definition.
The default is OFF.

Miscellaneous Pragmas

#pragma ALLOCS_NEW_MEMORY fname1, . . . , fnamen

This directive states that the function fname returns a pointer to new mem-
ory that it allocates, or a routine that it calls allocates. This pragma provides
additional information to the optimizer which results in more efficient code.

#pragma COPYRIGHT "string"

This directive places a copyright notice in the object file, using the string
argument and the date specified using COPYRIGHT DATE. If no date has been
specified using #pragma COPYRIGHT DATE, the current year is used. For ex-
ample, assuming the year is 1990, the directive #pragma COPYRIGHT "Acme
Software" places the following string in the object code:

(C) Copyright Acme Software, 1990. All rights
reserved. No part of this program may be photocopied,
reproduced, or transmitted without prior written
consent of Acme Software.

#pragma COPYRIGHT_DATE "string"
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This specifies a date string to be used in a copyright notice appearing in an
object module.

#pragma FLOAT_TRAPS_ON fname1, . . . , fnamen

This informs the compiler that function fname may enable floating-point
trap handling. When the compiler is so informed, it will not perform loop-
invariant code motion on floating-point operations in the functions named in
the pragma. This pragma is required for proper code generation when floating-
point traps are enabled and the code is optimized.

#pragma INTRINSIC intrinsic1 [ user-name ], . . .

This pragma declares an external user-name as an intrinsic.

#pragma INTRINSIC_FILE "path"

This directive specifies the path of a file in which the compiler can locate
information about intrinsic functions.

#pragma LOCALITY "string"

This specifies a name to be associated with the code written to a relocatable
object module. All code following the LOCALITY pragma is associated with the
name specified in string. The smallest scope of a unique LOCALITY pragma
is a function. For example, #pragma LOCALITY "MINE" will build the name
"$CODE$MINE$".
Code that is not headed by a LOCALITY pragma is associated with the name

$CODE$. An empty string causes the code name to revert to the default name
of $CODE$.

#pragma NO_SIDE_EFFECTS fname1, . . . , fnamen

This directive states that fname, and all the functions that fname calls, will
not modify any of a program’s local or global variables. This pragma provides
additional information to the optimizer which results in more efficient code.

#pragma VERSIONID "string"

This specifies a version string to be associated with a particular piece of code.
The string is placed into the object file produced when the code is compiled.

∞
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Abstract

We propose a specification for a C implementation of Fortran’s Basic
Linear Algebra Subprograms (BLAS).

Introduction

In 1973, Hanson, Krogh, and Lawson described the advantages of adopting
a set of basic routines for problems in linear algebra [6]. The original basic
linear algebra subprograms, commonly referred to as the BLAS or, in view of
subsequent developments, the Level 1 BLAS, have been very successful and have
been used in a wide range of software including LINPACK [3]. An excellent
discussion of the raison d’être of the BLAS is given in Dodson and Lewis, [2].
Subsequently, a set of Level 2 BLAS for matrix-vector operations, motivated

by the development of vector-processing machines, was specified by Dongarra
et al., [4]. More recently a set of Level 3 BLAS for matrix-matrix operations,
motivated by the development of hierarchical memory and parallel machines,
has been specified by Dongarra et al., [5].
Optimized implementations of all three levels of BLAS are now provided by

many manufacturers of high performance computers. Thus the BLAS provide
an infrastructure for the construction of portable and efficient software for linear
algebra and related areas of numerical computation. In particular the BLAS
are used as building blocks for LAPACK [1]. All three levels of BLAS are now
included in the NAG Fortran Library [9], and are used extensively in many
chapters of the Library.
NAG has recently launched a C Library [8]. In the continuing development

of that library the question of C equivalents of the Fortran BLAS naturally
arises. This report proposes a specification for a set of basic linear algebra
functions in C. We welcome comments on the proposal.
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BLAS in C

One immediate question arises as to the acronym for the basic linear algebra
functions in C. The logical choice would perhaps be the BLAFs, but since BLAS
has come to be thought of as a generic name, we propose that they be referred
to as the BLAS in C, or the C BLAS.
It may be argued that there is no real need to have separate C versions of

the BLAS. On many systems it is possible to call the Fortran BLAS from a
C program simply by linking with the appropriate library routines, and possi-
bly adjusting the names slightly, for example by adding an underscore to the
end, and passing all scalar arguments by reference. We believe that there is a
genuine need for the C BLAS. Firstly, even if all C programmers had access to
the Fortran BLAS, they might not know how to write their names so that the
C compiler recognises them. In any case, it is surely preferable to use a natural
C interface. Secondly, and most importantly, the Level 2 and 3 BLAS functions
operate on two-dimensional arrays to perform matrix-vector and matrix-matrix
operations. Anyone calling the Fortran BLAS from C would need to be aware
that such arrays are stored in row-major order in C and in column-major order
in Fortran, meaning that matrices would need to be transposed before calling
the BLAS. To avoid the unacceptable overhead of physically transposing matri-
ces before and after BLAS calls, the entire C program would have to be written
to store matrices in an unnatural way. This might make it almost impossible
to insert BLAS calls into already existing C code.
The proposed argument lists closely follow the equivalent Fortran ones, the

main changes being that enumerated types are used instead of character types
for option specification, and leading dimension parameters (i.e., LDA) are re-
placed by trailing dimension parameters (i.e., tda). Inside the BLAS functions,
two-dimensional arrays would typically be declared to have just one dimension,
for example double a[]. The only array size information known to the function
is therefore the trailing dimension parameter tda associated with the array a
which is passed to the function by the user. This can be used to perform address
arithmetic to access a as though it had two dimensions. Users are, of course,
at liberty to declare their arrays to have either one or two dimensions, so long
as they access the array elements correctly. This approach is preferable to the
alternative approach of using vectors of pointers to vectors, which would force
the user program to perform rather a large amount of work when initializing
them, and because the BLAS are low-level building blocks.
It has been suggested that the names of the C versions of the BLAS should be

different from the Fortran versions, because sometimes both Fortran and C ver-
sions will be available, and some systems do not distinguish between Fortran
and C names. The distinction could be made, for example, simply by prefixing
each name with c . This would lead to names of up to eight characters, though
only the first six are guaranteed unique by the C standard.
We would prefer to keep the C BLAS names identical to the Fortran BLAS.

If this is not possible on any particular system, it should be relatively easy to
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remove ambiguity by use of the #define directive. In this document, the usual
Fortran names have been used.
The argument lists use the following data types:

Integer: an integer data type of at least 32 bits.
float: the regular single precision floating-point type.
double: the regular double precision floating-point type.

Scomplex: a single precision complex type.
Complex: a double precision complex type.

plus the enumeration types given by

typedef enum {NoTranspose, Transpose, ConjugateTranspose}
MatrixTranspose;

typedef enum {UpperTriangle, LowerTriangle}
MatrixTriangle;

typedef enum {UnitTriangular, NotUnitTriangular}
MatrixUnitTriangular;

typedef enum {LeftSide, RightSide}
OperationSide;

The format of the names of the enumerated types, using phrases with cap-
italized initial letters and no underscores, is intended to follow one common
naming convention.
It is expected that the complex data types would be stored in Cartesian

form, i.e., as real and imaginary parts. For example:

typedef struct {
double re, im;

} Complex;

The operations performed by the C BLAS are intended to be identical to
those performed by the corresponding Fortran BLAS, as specified in [2], [4],
and [5].
We have not proposed C equivalents of two of the Level 1 BLAS—DQDOTI

and DQDOTA—which require quadruple precision arithmetic.
Since the publication of [2], [4], and [5], there have been some suggestions for

adding to the Fortran BLAS—for example, Level 1 routines for complex-plane
rotations, or Level 2 routines for complex-symmetric matrices. We have not
proposed adding such routines to the C BLAS at this stage, because we hope
that a ‘standard’ set of additions to the Fortran BLAS may be specified as a
by-product of the LAPACK project [1]. It would then be straightforward to
propose corresponding C BLAS, along the same lines as the routines proposed
here.
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The following code fragment, which overwrites the upper triangle of a sym-
metric positive-definite matrix by its Cholesky factorization, demonstrates how
calls to the BLAS functions dgemv and dscal might be used. We assume that
declarations and initializations such as the following have been made.

double a[10][10];
Integer i, j, k, n, tda;
n = 5;
tda = 10;

Without BLAS:

for (i = 0; i < n; ++i)
{

for (k = 0; k < i; ++k)
for (j = i; j < n; ++j)

a[i][j] -= a[k][i] * a[k][j];
a[i][i] = sqrt(a[i][i]);
for (j = i + 1; j < n; ++j)

a[i][j] = a[i][j] / a[i][i];
}

With BLAS:

for (i = 0; i < n; ++i)
{

dgemv(Transpose, i, n-i, -1.0, &a[0][i], tda, &a[0][i],
tda, 1.0, &a[i][i], (Integer)1);

a[i][i] = sqrt(a[i][i]);
dscal(n - i - 1, 1.0/a[i][i], &a[i][i+1], (Integer)1);

}

Since the first draft of this paper, we have seen details of a rather different
approach to defining C BLAS functions. Leyk [7] proposes a set of functions
and macros that allow a user to maintain vectors and matrices with associated
dimension information in structures. All vector and matrix storage must be
allocated using the provided functions. The report restricts itself to considera-
tion of Level 1 BLAS functions (apart from a matrix-vector multiply function),
operating on real and integer types.
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Level 1 BLAS in C
Generate a plane rotation

void srotg( float *a, float *b, float *c, float *s);

void drotg(double *a, double *b, double *c, double *s);

Generate a modified plane rotation

void srotmg( float *d1, float *d2, float *a, float b, float *param);

void drotmg(double *d1, double *d2, double *a, double b, double *param);

Apply a plane rotation

void srot(Integer n, float *x, Integer incx, float *y, Integer incy,

float c, float s);

void drot(Integer n, double *x, Integer incx, double *y, Integer incy,

double c, double s);
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Apply a modified plane rotation

void srotm(Integer n, float *x, Integer incx, float *y, Integer incy,

float *param);

void drotm(Integer n, double *x, Integer incx, double *y, Integer incy,

double *param);

x↔ y

void sswap(Integer n, float *x, Integer incx, float *y, Integer incy);

void dswap(Integer n, double *x, Integer incx, double *y, Integer incy);

void cswap(Integer n, Scomplex *x, Integer incx, Scomplex *y, Integer incy);

void zswap(Integer n, Complex *x, Integer incx, Complex *y, Integer incy);

x← αx

void sscal(Integer n, float alpha, float *x, Integer incx);

void dscal(Integer n, double alpha, double *x, Integer incx);

void cscal(Integer n, Scomplex alpha, Scomplex *x, Integer incx);

void zscal(Integer n, Complex alpha, Complex *x, Integer incx);

void csscal(Integer n, float alpha, Scomplex *x, Integer incx);

void zdscal(Integer n, double alpha, Complex *x, Integer incx);

y ← x

void scopy(Integer n, float *x, Integer incx, float *y, Integer incy);

void dcopy(Integer n, double *x, Integer incx, double *y, Integer incy);

void ccopy(Integer n, Scomplex *x, Integer incx, Scomplex *y, Integer incy);

void zcopy(Integer n, Complex *x, Integer incx, Complex *y, Integer incy);

y ← αx+ y

void saxpy(Integer n, float alpha, float *x, Integer incx, float *y,

Integer incy);

void daxpy(Integer n, double alpha, double *x, Integer incx, double *y,

Integer incy);

void caxpy(Integer n, Scomplex alpha, Scomplex *x, Integer incx,

Scomplex *y, Integer incy);

void zaxpy(Integer n, Complex alpha, Complex *x, Integer incx,

Complex *y, Integer incy);

dot← xT y

float sdot(Integer n, float *x, Integer incx, float *y, Integer incy);

double dsdot(Integer n, float *x, Integer incx, float *y, Integer incy);

double ddot(Integer n, double *x, Integer incx, double *y, Integer incy);

dot← α+ xT y

float sdsdot(Integer n, float alpha, float *x, Integer incx,

float *y, Integer incy);
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dotu← xT y

Scomplex cdotu(Integer n, Scomplex *x, Integer incx, Scomplex *y,

Integer incy);

Complex zdotu(Integer n, Complex *x, Integer incx, Complex *y,

Integer incy);

dotc← xHy

Scomplex cdotc(Integer n, Scomplex *x, Integer incx, Scomplex *y,

Integer incy);

Complex zdotc(Integer n, Complex *x, Integer incx, Complex *y,

Integer incy);

nrm2← ‖x‖2
float snrm2(Integer n, float *x, Integer incx);

double dnrm2(Integer n, double *x, Integer incx);

float scnrm2(Integer n, Scomplex *x, Integer incx);

double dznrm2(Integer n, Complex *x, Integer incx);

asum← ‖x‖1
float sasum(Integer n, float *x, Integer incx);

double dasum(Integer n, double *x, Integer incx);

asum← ‖Re (x)‖1 + ‖Im (x)‖1
float scasum(Integer n, Scomplex *x, Integer incx);

double dzasum(Integer n, Complex *x, Integer incx);

amax← first k such that |xk| = max|xi|
Integer isamax(Integer n, float *x, Integer incx);

Integer idamax(Integer n, double *x, Integer incx);

amax← first k such that |Re(xk)|+ |Im(xk)| = max(|Re(xi)|+ |Im(xi)|)
Integer icamax(Integer n, Scomplex *x, Integer incx);

Integer izamax(Integer n, Complex *x, Integer incx);

Level 2 BLAS in C
y ← αAx+ βy, y ← αAT x+ βy, y ← αAHx+ βy, A is m by n

void sgemv(MatrixTranspose trans, Integer m, Integer n, float alpha,

float *a, Integer tda, float *x, Integer incx, float beta,

float *y, Integer incy);

void dgemv(MatrixTranspose trans, Integer m, Integer n, double alpha,

double *a, Integer tda, double *x, Integer incx, double beta,

double *y, Integer incy);
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void cgemv(MatrixTranspose trans, Integer m, Integer n, Scomplex alpha,

Scomplex *a, Integer tda, Scomplex *x, Integer incx,

Scomplex beta, Scomplex *y, Integer incy);

void zgemv(MatrixTranspose trans, Integer m, Integer n, Complex alpha,

Complex *a, Integer tda, Complex *x, Integer incx, Complex beta,

Complex *y, Integer incy);

y ← αAx+ βy, y ← αAT x+ βy, y ← αAHx+ βy, A is m by n band

void sgbmv(MatrixTranspose trans, Integer m, Integer n, Integer kl,

Integer ku, float alpha, float *a, Integer tda, float x,

Integer incx, float beta, float *y, Integer incy);

void dgbmv(MatrixTranspose trans, Integer m, Integer n, Integer kl,

Integer ku, double alpha, double *a, Integer tda, double x,

Integer incx, double beta, double *y, Integer incy);

void cgbmv(MatrixTranspose trans, Integer m, Integer n, Integer kl,

Integer ku, Scomplex alpha, Scomplex *a, Integer tda, Scomplex x,

Integer incx, Scomplex beta, Scomplex *y, Integer incy);

void zgbmv(MatrixTranspose trans, Integer m, Integer n, Integer kl,

Integer ku, Complex alpha, Complex *a, Integer tda, Complex x,

Integer incx, Complex beta, Complex *y, Integer incy);

y ← αAx+ βy, A is n by n Hermitian

void chemv(MatrixTriangle uplo, Integer n, Scomplex alpha,

Scomplex *a, Integer tda, Scomplex *x, Integer incx,

Scomplex beta, Scomplex *y, Integer incy);

void zhemv(MatrixTriangle uplo, Integer n, Complex alpha,

Complex *a, Integer tda, Complex *x, Integer incx,

Complex beta, Complex *y, Integer incy);

y ← αAx+ βy, A is n by n Hermitian band

void chbmv(MatrixTriangle uplo, Integer n, Integer k, Scomplex alpha,

Scomplex *a, Integer tda, Scomplex *x, Integer incx,

Scomplex beta, Scomplex *y, Integer incy);

void zhbmv(MatrixTriangle uplo, Integer n, Integer k, Complex alpha,

Complex *a, Integer tda, Complex *x, Integer incx,

Complex beta, Complex *y, Integer incy);

y ← αAx+ βy, A is n by n Hermitian in packed form

void chpmv(MatrixTriangle uplo, Integer n, Scomplex alpha, Scomplex *ap,

Scomplex *x, Integer incx, Scomplex beta, Scomplex *y, Integer incy);

void zhpmv(MatrixTriangle uplo, Integer n, Complex alpha, Complex *ap,

Complex *x, Integer incx, Complex beta, Complex *y, Integer incy);

y ← αAx+ βy, A is n by n symmetric

void ssymv(MatrixTriangle uplo, Integer n, float alpha, float *a,

Integer tda, float *x, Integer incx, float beta, float *y, Integer incy);



A Proposed Specification of BLAS Routines in C – Datardina, et al 303

void dsymv(MatrixTriangle uplo, Integer n, double alpha, double *a, Integer

tda, double *x, Integer incx, double beta, double *y, Integer incy);

y ← αAx+ βy, A is n by n symmetric band

void ssbmv(MatrixTriangle uplo, Integer n, Integer k, float alpha,

float *a, Integer tda, float *x, Integer incx, float beta,

float *y, Integer incy);

void dsbmv(MatrixTriangle uplo, Integer n, Integer k, double alpha,

double *a, Integer tda, double *x, Integer incx, double beta,

double *y, Integer incy);

y ← αAx+ βy, A is n by n symmetric in packed form

void sspmv(MatrixTriangle uplo, Integer n, float alpha, float *ap,

float *x, Integer incx, float beta, float *y, Integer incy);

void dspmv(MatrixTriangle uplo, Integer n, double alpha, double *ap,

double *x, Integer incx, double beta, double *y, Integer incy);

x← Ax, x← AT x, x← AHx, A is n by n triangular

void strmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, float *a, Integer tda,

float *x, Integer incx);

void dtrmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, double *a, Integer tda,

double *x, Integer incx);

void ctrmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Scomplex *a, Integer tda,

Scomplex *x, Integer incx);

void ztrmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Complex *a, Integer tda,

Complex *x, Integer incx);

x← Ax, x← AT x, x← AHx, A is n by n triangular band

void stbmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Integer k, float *a,

Integer tda, float *x, Integer incx);

void dtbmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Integer k, double *a,

Integer tda, double *x, Integer incx);

void ctbmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Integer k, Scomplex *a,

Integer tda, Scomplex *x, Integer incx);

void ztbmv(MatrixTriangle uplo, MatrixTranspose trans,

MatrixUnitTriangular diag, Integer n, Integer k, Complex *a,

Integer tda, Complex *x, Integer incx);
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x← Ax, x← AT x, x← AHx, A is n by n triangular in packed form

void stpmv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, float *ap, float *x, Integer incx);

void dtpmv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, double *ap, double *x, Integer incx);

void ctpmv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Scomplex *ap, Scomplex *x, Integer incx);

void ztpmv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Complex *ap, Complex *x, Integer incx);

x← A−1x, x← A−T x, x← A−Hx, A is n by n triangular

void strsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, float *a, Integer tda, float *x, Integer incx);

void dtrsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, double *a, Integer tda, double *x, Integer incx);

void ctrsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Scomplex *a, Integer tda, Scomplex *x, Integer incx);

void ztrsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Complex *a, Integer tda, Complex *x, Integer incx);

x← A−1x, x← A−T x, x← A−Hx, A is n by n triangular band

void stbsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Integer k, float *a, Integer tda, float *x,

Integer incx);

void dtbsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Integer k, double *a, Integer tda, double *x,

Integer incx);

void ctbsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Integer k, Scomplex *a, Integer tda, Scomplex *x,

Integer incx);

void ztbsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Integer k, Complex *a, Integer tda, Complex *x,

Integer incx);

x← A−1x, x← A−T x, x← A−Hx, A is n by n triangular in packed form

void stpsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, float *ap, float *x, Integer incx);

void dtpsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, double *ap, double *x, Integer incx);

void ctpsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Scomplex *ap, Scomplex *x, Integer incx);



A Proposed Specification of BLAS Routines in C – Datardina, et al 305

void ztpsv(MatrixTriangle uplo, MatrixTranspose trans, MatrixUnitTriangular

diag, Integer n, Complex *ap, Complex *x, Integer incx);

A← αxyT +A, A is m by n

void sger(Integer m, Integer n, float alpha, float *x, Integer incx,

float *y, Integer incy, float *a, Integer tda);

void dger(Integer m, Integer n, double alpha, double *x, Integer incx,

double *y, Integer incy, double *a, Integer tda);

A← αxyT +A, A is m by n

void cgeru(Integer m, Integer n, Scomplex alpha, Scomplex *x,

Integer incx, Scomplex *y, Integer incy, Scomplex *a, Integer tda);

void zgeru(Integer m, Integer n, Complex alpha, Complex *x,

Integer incx, Complex *y, Integer incy, Complex *a, Integer tda);

A← αxyH +A, A is m by n

void cgerc(Integer m, Integer n, Scomplex alpha, Scomplex *x,

Integer incx, Scomplex *y, Integer incy, Scomplex *a, Integer tda);

void zgerc(Integer m, Integer n, Complex alpha, Complex *x,

Integer incx, Complex *y, Integer incy, Complex *a, Integer tda);

A← αxxH +A, A is n by n Hermitian

void cher(MatrixTriangle uplo, Integer n, Scomplex alpha,

Scomplex *x, Integer incx, Scomplex *a, Integer tda);

void zher(MatrixTriangle uplo, Integer n, Complex alpha,

Complex *x, Integer incx, Complex *a, Integer tda);

A← αxxH +A, A is n by n Hermitian in packed form

void chpr(MatrixTriangle uplo, Integer n, Scomplex alpha,

Scomplex *x, Integer incx, Scomplex *ap);

void zhpr(MatrixTriangle uplo, Integer n, Complex alpha,

Complex *x, Integer incx, Complex *ap);

A← αxyH + y(αx)H +A, A is n by n Hermitian

void cher2(MatrixTriangle uplo, Integer n, Scomplex alpha, Scomplex *x,

Integer incx, Scomplex *y, Integer incy, Scomplex *a, Integer tda);

void zher2(MatrixTriangle uplo, Integer n, Complex alpha, Complex *x,

Integer incx, Complex *y, Integer incy, Complex *a, Integer tda);

A← αxyH + y(αx)H +A, A is n by n Hermitian in packed form

void chpr2(MatrixTriangle uplo, Integer n, Scomplex alpha, Scomplex *x,

Integer incx, Scomplex *y, Integer incy, Scomplex *ap);
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void zhpr2(MatrixTriangle uplo, Integer n, Complex alpha, Complex *x,

Integer incx, Complex *y, Integer incy, Complex *ap);

A← αxxT +A, A is n by n symmetric

void ssyr(MatrixTriangle uplo, Integer n, float alpha,

float *x, Integer incx, float *a, Integer tda);

void dsyr(MatrixTriangle uplo, Integer n, double alpha,

double *x, Integer incx, double *a, Integer tda);

A← αxxT +A, A is n by n symmetric in packed form

void sspr(MatrixTriangle uplo, Integer n, float alpha,

float *x, Integer incx, float *ap);

void dspr(MatrixTriangle uplo, Integer n, double alpha,

double *x, Integer incx, double *ap);

A← αxyT + αyxT +A, A is n by n symmetric

void ssyr2(MatrixTriangle uplo, Integer n, float alpha, float *x,

Integer incx, float *y, Integer incy, float *a, Integer tda);

void dsyr2(MatrixTriangle uplo, Integer n, double alpha, double *x,

Integer incx, double *y, Integer incy, double *a, Integer tda);

A← αxyT + αyxT +A, A is n by n symmetric in packed form

void sspr2(MatrixTriangle uplo, Integer n, float alpha, float *x,

Integer incx, float *y, Integer incy, float *ap);

void dspr2(MatrixTriangle uplo, Integer n, double alpha, double *x,

Integer incx, double *y, Integer incy, double *ap);

Level 3 BLAS in C
C ← αop(A)op(B) + βC, op(X) = X, XT , XH , C is m by n

void sgemm(MatrixTranspose transa, MatrixTranspose transb, Integer m,

Integer n, Integer k, float alpha, float *a, Integer tda,

float *b, Integer tdb, float beta, float *c, Integer tdc);

void dgemm(MatrixTranspose transa, MatrixTranspose transb, Integer m,

Integer n, Integer k, double alpha, double *a, Integer tda,

double *b, Integer tdb, double beta, double *c, Integer tdc);

void cgemm(MatrixTranspose transa, MatrixTranspose transb, Integer m,

Integer n, Integer k, Scomplex alpha, Scomplex *a, Integer tda,

Scomplex *b, Integer tdb, Scomplex beta, Scomplex *c, Integer tdc);

void zgemm(MatrixTranspose transa, MatrixTranspose transb, Integer m,

Integer n, Integer k, Complex alpha, Complex *a, Integer tda,

Complex *b, Integer tdb, Complex beta, Complex *c, Integer tdc);
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C ← αAB + βC, C ← αBA + βC, C is m by n, A is m by m symmetric

void ssymm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

float alpha, float *a, Integer tda, float *b, Integer tdb,

float beta, float *c, Integer tdc);

void dsymm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

double alpha, double *a, Integer tda, double *b, Integer tdb,

double beta, double *c, Integer tdc);

void csymm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b, Integer tdb,

Scomplex beta, Scomplex *c, Integer tdc);

void zsymm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

Complex alpha, Complex *a, Integer tda, Complex *b, Integer tdb,

Complex beta, Complex *c, Integer tdc);

C ← αAB + βC, C ← αBA + βC, C is m by n, A is m by m Hermitian

void chemm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b,

Integer tdb, Scomplex beta, Scomplex *c, Integer tdc);

void zhemm(OperationSide side, MatrixTriangle uplo, Integer m, Integer n,

Complex alpha, Complex *a, Integer tda, Complex *b, Integer tdb,

Complex beta, Complex *c, Integer tdc);

C ← αAAT + βC, C ← αAT A+ βC, C is n by n

void ssyrk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, float alpha, float *a, Integer tda,

float beta, float *c, Integer tdc);

void dsyrk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, double alpha, double *a, Integer tda,

double beta, double *c, Integer tdc);

void csyrk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Scomplex alpha, Scomplex *a, Integer tda,

Scomplex beta, Scomplex *c, Integer tdc);

void zsyrk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Complex alpha, Complex *a, Integer tda,

Complex beta, Complex *c, Integer tdc);

C ← αAAH + βC, C ← αAHA+ βC, C is n by n

void cherk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Scomplex alpha, Scomplex *a, Integer tda,

Scomplex beta, Scomplex *c, Integer tdc);

void zherk(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Complex alpha, Complex *a, Integer tda,

Complex beta, Complex *c, Integer tdc);
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C ← αABH + αBAH + βC, C ← αAHB + αBHA+ βC, C is n by n

void cher2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b,

Integer tdb, Scomplex beta, Scomplex *c, Integer tdc);

void zher2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Complex alpha, Complex *a, Integer tda, Complex *b,

Integer tdb, Complex beta, Complex *c, Integer tdc);

C ← αABT + αBAT + βC, C ← αAT B + αBT A+ βC, C is n by n

void ssyr2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, float alpha, float *a, Integer tda, float *b,

Integer tdb, float beta, float *c, Integer tdc);

void dsyr2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, double alpha, double *a, Integer tda, double *b,

Integer tdb, double beta, double *c, Integer tdc);

void csyr2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b,

Integer tdb, Scomplex beta, Scomplex *c, Integer tdc);

void zsyr2k(MatrixTriangle uplo, MatrixTranspose trans, Integer n,

Integer k, Complex alpha, Complex *a, Integer tda, Complex *b,

Integer tdb, Complex beta, Complex *c, Integer tdc);

B ← αop(A)B, B ← αBop(A), op(A) = A, AT , AH , B is m by n

void strmm(MatrixTriangle side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

float alpha, float *a, Integer tda, float *b, Integer tdb);

void dtrmm(MatrixTriangle side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

double alpha, double *a, Integer tda, double *b, Integer tdb);

void ctrmm(MatrixTriangle side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b, Integer tdb);

void ztrmm(MatrixTriangle side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

Complex alpha, Complex *a, Integer tda, Complex *b, Integer tdb);

B ← αop(A−1)B, B ← αBop(A−1), op(A) = A, AT , AH , B is m by n

void strsm(OperationSide side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

float alpha, float *a, Integer tda, float *b, Integer tdb);

void dtrsm(OperationSide side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

double alpha, double *a, Integer tda, double *b, Integer tdb);
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void ctrsm(OperationSide side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

Scomplex alpha, Scomplex *a, Integer tda, Scomplex *b, Integer tdb);

void ztrsm(OperationSide side, MatrixTriangle uplo, MatrixTranspose

transa, MatrixUnitTriangular diag, Integer m, Integer n,

Complex alpha, Complex *a, Integer tda, Complex *b, Integer tdb);

The Authors are all involved with the development of numerical software for
the NAG Libraries. Jeremy Du Croz and Sven Hammarling where also involved
in the development of the Level 2 and Level 3 BLAS in Fortran 77. They can
be reached at sven@nag.co.uk.
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Abstract

Trigraphs, introduced by X3J11 to address differences in the character
sets used around the world, have proven to be one of the more controver-
sial additions to the C language. A number of people, most notably the
ISO C committee representative from Denmark, have opposed trigraphs
as unreadable and have asked for alternative solutions. This paper will
look at some of the history behind this controversy. We will look at
several of the proposals that have been presented, the issues raised, and
the resulting compromise positions that were recently approved within
WG14, the ISO C language standard committee, and X3J16/WG21, the
U.S. and ISO C++ standards committees.

Background

The C language, as originally defined, requires a large set of characters, includ-
ing a number of special characters (such as #, |, [, {, and ~). These characters
have proven to be a problem because they are missing from many of the national
character sets in use around the world. To understand this situation better we
need to look, at least briefly, at the international standards for character sets.
In many European (and other) countries the national character set stan-

dard is a version of the International Organization for Standardization (ISO)
646:1983 international standard for 7-bit character sets. ISO-646 splits the
character set into two parts. It defines a core set of characters that all standard-
compliant character sets must provide. This is known as the ISO-646 Invariant
Subset. Included in this subset are the standard English upper- and lowercase
letters, the digits 0–9, and the printing characters !, ", %, &, ’, (, ), *, +, space,
,, -, ., /, :, ;, <, =, >, and ?.
ISO-646 also sets aside a part of the character set so that each national stan-

dard group can define special characters that are needed in their environment.
In the U.S., the ASCII character set was used to fill in the extra slots. These
nation-specific character-set positions are used to define characters such as #,
[, and {. In other parts of the world these character-set positions have been
assigned to other characters such as £, ä, or Æ.

310



Trigraphs: The Search for Alternatives – Brodie 311

If we are going to define the C language so that it can be effectively written
using any of these standard national characters sets, we must allow alternatives
for the original C characters that fall into the nation-specific portion of the
character sets.
The solution of using whatever national characters happen to occupy the

same character set positions has been used but results in programs that are very
difficult to read, write, and understand. A better solution is to allow programs
to be written using only the ISO-646 Invariant Subset.
The C characters that fall into the nation-specific portion of the ISO-646

character set are: #, [, ], {, }, \, |, ~, and ^.

The Search for Solutions

Early in the X3J11 deliberations (in 1984) proposals were made to address this
issue. These proposals focused on providing alternative spellings or representa-
tions for the special characters. The proposal that gained wide-spread support
was prepared by two European members of X3J11, Mike Banahan and Keith
Winter. Their proposal was the foundation for the current trigraph solution.
After examining the ISO-646 Invariant Subset, it became clear to Banahan

and Winter that simple digraphs (two character escape sequences) would not
be sufficient to allow alternate spellings for the special characters. Every one of
the characters in the ISO-646 Invariant Subset is used by C. This means that
there is no single, always available, character that can be used to signal the start
of an alternate spelling. This led to the conclusion that a two-character escape
sequence was needed to indicate an alternate spelling for one of the special
characters. (It was unfortunate that the escape character already used in C,
the backslash \, was one of the problem children. Otherwise, the backslash’s
escape function could have been extended to cover these additional characters.)
This led to the proposal of trigraphs—alternate spellings comprised of three

characters. Trigraphs use a two-character escape-sequence prefix, followed by
a single character to represent each special characters. The Winter/Banahan
paper proposed the use of a ?? escape sequence prefix followed by a single
character that was similar to the character that the trigraph sequence was
replacing.
The following is the set of the special characters along with the trigraphs

that were recommended and adopted:
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Standard C Trigraphs
Sequence Meaning
??! |
??’ ^
??( [
??) ]
??- ~
??/ \
??< {
??= #
??> }

Winter and Banahan explained their selection of the ?? escape sequence in
the following way:

“The reason for choosing the ?? as the introductory escape sequence
is that it is not used anywhere else in C and suggests that “some-
thing funny” is going on. From the point of view of readability,
we have chosen to use a set of trigraphs that have some graphical
similarity with the characters that they are supposed to stand for.
Furthermore most of them can be surrounded by white space when
they are used, allowing them to stand out.
The sequence ??? can only be generated when a ? is followed by

a character requiring trigraph representation and must be treated
as such. Whenever that sequence is seen on the input stream, it
must be interpreted as a single query mark followed by what may
or may not turn out to be the start of a trigraph.”

Perhaps we should have seen the controversy that was coming when there
was significant debate on the form of the trigraphs. The minutes of the X3J11
meeting where the trigraphs were adopted noted:

“There followed a rambling tour of ‘Punctuation Land’ as people
suggested various escape characters for writing trigraphs.”

The impact of using trigraphs can be seen in the following example.
The first version of the program uses the full familiar character set:

#include <stdio.h>

main(int argc, char *argv[])
{

if (argc < 1 || *argv[0] == ’\0’) return;
printf("Hello, %s\n", argv[0]);

}

Using trigraphs this program becomes:
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??=include <stdio.h>

main(int argc, char *argv??(??))
??<

if (argc < 1 ??!??! *argv??(0??) == ’??/0’) return;
printf("Hello, %s??/n", argv??(0??));

??>

The Search for More Readable Alternatives

Even when trigraphs were proposed, people realized that they were not the
perfect solution. Even Banahan andWinter noted in their proposal “[Trigraphs]
are neither elegant nor pleasing ...”
As people began to work with trigraphs, more and more complaints were

heard that the resulting programs were unreadable. As a result, various pro-
posals were made to solve this readability problem.
The latest round of proposals for an alternate to trigraphs can be traced to

a 1988 paper by Keld Simonsen and Bjarne Stroustrup. The proposal split the
problem into two pieces. Within character and string literals, trigraphs were
accepted as the only viable alternative. However, for other contexts, alternatives
to the trigraphs were provided.
The proposal recommended a collection of keywords and new lexical symbols

as follows:

Keyword Alternative
Keyword Meaning

or |
cor ||
and &
cand &&
xor ^

compl ~

This still left the square brackets and braces, as well as the backslash. [Ed:
It also introduced a “solution” for the & character which was not part of the prob-
lem.] Rather than introduce new keywords for these, the proposal presented a
set of digraphs. In the limited context of C operators and punctuators, digraphs
can be used to supply alternative spellings for the special characters. The pro-
posed alternative ways of representing these remaining characters included:

Digraph Alternative #1
Digraph Meaning

(: {
:) }
!( [
) ]
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The Simonsen and Stroustrup paper made the following comments on their
proposed choices:

“We decided to make the compound statement brackets digraphs,
finding begin and end too long to write and too likely to be found
‘not in the spirit of C’ by large numbers of programmers.”

The proposal would allow the above program to be written

??=include <stdio.h>

main(int argc, char *argv!())
(:

if (argc < 1 cor *argv!(0) == ’??/0’) return;
printf("Hello, %s??/n", argv!(0));

:)

The paper further proposed that an extension to this would be to allow the
! to be viewed as an infix subscripting operator. The authors noted:

“The grammar of C precludes using ( and ) for subscripting (as is
done for many other languages). Parentheses are typically unnec-
essary for subscripting and ! should be considered an infix sub-
script operator (as in BCPL). The binding strength of the binary
! operator (subscripting) should be just above the unary operators
and it should be left-associative. For example, a!b.c!2*d means
((a!(b.c))!2)*d.”

This addition, allows the sample program to be written as follows:

??=include <stdio.h>

main(int argc, char *argv!)
(:

if (argc < 1 cor *argv!0 == ’??/0’) return;
printf("Hello, %s??/n", argv!0);

:)

Essentially this same proposal was later proposed to WG14, the ISO com-
mittee producing an international standard for C.
This proposal led to significant debate within X3J11. Overall, the committee

did not support the proposal.
There were objections to the introduction of additional keywords, with the

side-effect of breaking existing code. Although the position was not unanimous,
there was a preference for a collection of macros rather than new keywords.
Tom Plum, vice-chair of X3J11, noted in one of his papers responding to the
proposal:
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“It has been suggested several times that simple macro names pro-
vide all that is required for greater readability.
It would be a pure extension to define a new header—call it

<iso646.h> say—in which a specified set of new names are pro-
vided. The S&S [Simonsen and Stroustrup] proposal goes so far as
to suggest that ‘the new keywords could be conditionally in effect
for new programs.’ If they are conditional, then why not confine
them to a header-file definition?
The only point in the S&S paper that favors new keywords

over a header-file is that (by re-programming every parser) the
new keywords can be combined with = to make assignment opera-
tors. But on the other hand, the header-file can provide or equals,
and equals, and xor equals.”

Another major objection appeared in the area of the new use of ! in array
declarations and subscripting operations. This part of the proposal goes be-
yond simple spelling replacements. Beyond the concern for introducing a new
operator, it was pointed out that ! becomes a postfix operator in the situa-
tion where it replaces empty brackets (e.g., int a[] becomes int a!). There
was a concern that all of the ramifications of this addition might not be well
understood for a long time. (X3J11 has experienced a number of “innocuous
looking” changes where the full ramifications were not fully appreciated for
several years.)
An additional concern was raised over the use of (: as a new alternate

spelling for the square brackets. This character sequence can appear in an
existing standard-conforming programs. Consider a macro invocation that ac-
cepts arguments. It is perfectly valid for the replacement tokens that make up
the argument list to include colons. Consider the following simple example:

#define str( x ) #x

str(: Out of memory :)

In the current standard this is perfectly legitimate, resulting in the string

": Out of memory:".

Under the proposal the result would be equivalent to

str{Out of memory}

In fact, with macro invocations, it is possible to have any token sequence
between the opening and closing parenthesis of the invocation argument list.
This means that any digraph proposal that uses parentheses risks breaking
existing code.
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X3J11 recognized the need for a solution that would be acceptable to the
U.S. while meeting the readability requirements of those proposing alternate
solutions to the general use of trigraphs. In an attempt to give some specific
guidance to those making alternative proposals, X3J11 passed several motions
outlining the boundaries of what they would consider acceptable solutions to
the readability problems of trigraphs. These motions were:

“Solutions to the problem of national variants of ISO-646 should be
restricted to alternate spellings for existing tokens and the introduc-
tion of new macros in new headers.”

The second motion read:

“Solutions to the problem of national variants of ISO-646 should not
cause a change in behavior of a strictly conforming program.”

These proposals clearly indicate that X3J11 would not support the intro-
duction of new keywords or operators.

The Compromise

A compromise position has evolved from these proposals and the concerns ex-
pressed. It includes a standard header, <iso646.h>, that establishes the follow-
ing mapping between a set of macro names and the corresponding operators:

Macro Alternative
Macro Meaning
bitand &
and &&
bitor |
or ||
xor ^
compl ~
and eq &=
or eq |=
xor eq ~=

In addition, a new set of digraph spellings has been added as an alternative
to a number of the other problem characters. The following six constructs
are equivalent to the use of the listed characters outside character and string
literals:
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Digraph Alternative #2
Digraph Meaning

<% {
%> }
<: [
:> ]
%% #

%%%% ##

The digraphs %% and %%%% are used only in preprocessing directives.
This proposal was accepted by WG14 at its last meeting in Milano, Italy,

in December 1991. [Ed: Acceptance was not unanimous. It will be considered
by X3J11 at their next meeting, in May, in Salt Lake City.]
Now our sample program is written as:

%%include <stdio.h>
%%include <iso646.h>

main(int argc, char *argv<::>)
<%

if (argc < 1 or *argv<:0:> == ’??/0’) return;
printf("Hello, %s??/n", argv<:0:>);

%>

The C++ Solution

X3J16 and WG21, the ANSI and ISO C++ committees, have adopted a slightly
different proposal—they actually went further than the WG14 resolution.
X3J16/WG21 adopted the list of alternate names from the proposal accepted

by WG14, plus two additional ones for “consistency.” The additional names
are:

C++ Additions
Name Meaning
not !

not eq !=

WG14 did not address ! since it is included in the ISO-646 invariant subset.
The major difference between the proposal adopted by WG14 and the one
adopted by X3J16/WG21 is not the additional names. The C++ committees
voted to treat all these new names as reserved library names, rather
than as macro names. This means that they will always be available, rather
than only when <iso646.h> is explicitly included.
Since C++ will have a header called <iso646.h>, C programs will not be

rejected by a C++ translator because of any reference to this header, but in
C++ this header may well be empty. One advantage of this approach is that
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everyone has access to the names and no one feels like his native environment
is “second class” and must specify something special to get the translator to
handle his national character set. On the negative side, there is the possibility
that existing code will be broken and all translators will have to be modified to
accept these new reserved words.
It is interesting to note the different tolerances for changes exhibited by

X3J11 and X3J16/WG21. X3J11 has a “released product” and is reluctant
to make changes that are not fully upward-compatible. Changes, particularly
those which are not 100% upward-compatible with the existing standard, are a
big deal. They are only supported if there is no other viable technical alternative
to a serious problem. X3J16/WG21, on the other hand, is at a stage where
it expects some, if not many, changes before they are ready to release their
standard. All translators that wish to be C++ standard-conforming will be
required to change in the future. Therefore, any change such as adding keywords
is not perceived, at least emotionally, as being as significant. This is not to
say that X3J11 is more mature or that X3J16/WG21 is more flexible. The
committees are simply at different points in their life cycles. Because of this,
it is not surprising that they address similar problems with different solutions.
Whether a single common solution will be identified and accepted by both the
C and C++ communities, before all this runs its course, is open to debate. We
won’t know for a while. It does, however, appear that a final solution is taking
shape.

Postscript

In the long run (ten years, or less, perhaps), the use of trigraphs—and indeed
digraphs—will diminish as machines using standard 8-bit character sets replace
older equipment. These 8-bit character sets have national characters as well as
room for all of the special characters used by C.
The evolution of the solution for the special character problems of C is

typical of many of the problems addressed in the standards arena. The exchange
of ideas and different proposals and counter proposals has allowed us to move to
a compromise position that is acceptable to the majority of the people affected.

Jim Brodie is Chair of the ANSI C standards committee, X3J11, and a
Chief Software Engineer for Motorola, Inc. He has coauthored books with
P.J. Plauger and Tom Plum and is the Standards Editor for The Journal of
C Language Translation. Jim can be reached at (602) 897-4390 or brodie@ssdt-
tempe.sps.mot.com.
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Abstract

This is the second of a two-part series that discusses a new systems pro-
gramming language called Parasol, a language derived from C. New fea-
tures are described including support for incremental compilation, object-
oriented programming, and parallel programming. Each feature is com-
pared with C, and a description is given as to why that feature was
adopted.

Object-oriented Extensions (continued)

Initializers

Parasol allows structure constants that use the same syntax as aggregate ini-
tializers. I decided that I would merge the initializer syntax for static and auto-
matic objects with the concept of structure constants. I changed the initializer
syntax for Parasol to use square brackets instead of curly braces. This way,
there would be no syntactic ambiguity in expressions. Curly braces starting a
structure constant might be hard to distinguish from the beginning of a block
at the start of an expression. Structure constants can’t appear at the beginning
of an expression, but the LALR grammar needed to disambiguate the cases
might be a little complicated. Square brackets are completely unambiguous
since subscripting can only appear after an operand2.
For example:

Days: const [] int = [ 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 ];

This statement initializes a constant array of integers with the number of
days in each month. Parasol initializers do not allow brackets to be option-
ally omitted or included. Each aggregate object being initialized must have a

2NCEG has proposed an aggregate constant using {}’s, but that requires a leading cast.
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bracket-enclosed initializer and each scalar initializer must be a simple expres-
sion. This simplification of the initializer syntax was not really necessary, but
was done because I felt that the simpler rules were also more sensible. The new
rules eliminate a parsing ambiguity that Standard C acknowledges. In older
C implementations, partially bracketed initializers got different answers; it de-
pended on the parsing technique used. Parasol simply prohibits such constructs
altogether and avoids the problem.
The above statement can also be written as follows in Parasol:

Days: [12] int;

Days = [ 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 ];

This sort of assignment obviously means that Days cannot be constant as in
the first declaration, but in the second example one might conceivably assign a
different initializer depending on whether the table is needed for a leap year.
Structures present some problems. Take the following for example:

Figure: {
private:
x: int;
y: int;
visible:
sizex: int;
sizey: int;
public:
shape: figureShapes;

};

Figure = [ 10, 20, F_CIRCLE ];

In this example, I am assigning a structure constant to a structure with pri-
vate members. Since you cannot access private members, you cannot initialize
them. The rule is that private members are initialized to zero and the values
in an initializer correspond to the public and visible members. In the above
example, the x and y members are both set to zero, the sizex member is set
to 10, sizey to 20 and shape to the constant F CIRCLE.

Initializing Dynamic Function Vectors

An interesting question arises concerning dynamically allocated objects in Para-
sol. In a factory method, for example, you might call alloc to get the memory
for an object. When the address is returned by alloc the memory is not yet
tagged any particular way. By the time the method returns the address as a
pointer to the object type, if you have any dynamic methods for the type, you
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need to plug in the tag for it.
Static objects are initialized at compile-time, since the address of the dy-

namic vector table is known. An automatic object gets initialized when its
declaration statement is reached.
One way of setting the tag field of an object is to copy a static object into

the allocated memory. That notion of a copy into the target object is exactly
how dynamic objects are initialized, but you don’t have to create a static object
just for the purpose. Simply assigning a structure constant through the pointer
to the newly allocated object will set the tag field.

Object-Oriented Issues

While many older languages have been cited as possessing object-oriented fea-
tures, it was SmallTalk that first established the term in the computer science
community. SmallTalk is also among the purest expressions of the basic ideas.
Philosophically, SmallTalk is miles away from C.
SmallTalk does no compile-time type checking, while C does only compile-

time type checking. Like C, Parasol uses extensive static type checking. Com-
puter instruction sets are almost universally designed to fix the data types with
the instruction itself. Static compile-time type checking allows a compiler to
pick the exact instruction needed for a given arithmetic operator and thus avoid
a lot of runtime overhead. When execution time of arithmetic is important,
compile-time type binding becomes a necessity. While SmallTalk interpreters
can lower that overhead through cacheing, the overhead cannot be completely
eliminated.
Since a major component of SmallTalk’s flexibility is the ease of writing

generic code that can, say, print or draw an object without the exact type of
the object being known beforehand, compile-time type checking is not possible.
You are trading the knowledge that most objects do have a known type at
compile-time for the added complexity of managing references when you don’t
know the exact type.
SmallTalk uses a completely incremental development environment in which

there is no boundary line between the operating system, the runtime library, and
user supplied code. C is now defined with a very clear distinction between built-
in operators, Standard library functions and user-supplied functions. Almost all
C implementations also provide low-level interfaces to the underlying operating-
system services as well.
The high integration of SmallTalk environments has not been used in Para-

sol. Even though the first implementation of Parasol runs on an operating
system written in Parasol, it does not completely rely on that special oper-
ating system. Parasol should be implementable on many operating systems,
although some of the parallel programming constructs require the equivalent of
inter-process messages. In any event, a clear line is drawn between operating-
system services and user code.
In SmallTalk an object has a type. In C, an object is defined as storage, but
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type is imposed by the expression used to manipulate the storage. Thus, while
it is in general not portable, C implementations support the ability to twiddle
bits in data using several different data types. Low-level software like operating
systems or compilers that must efficiently read data from external devices and
process it must have this ability.
In Parasol I have adopted the notion of object as defined for C. Systems-

programming code needs to dissect structured data in many subtle ways. Rigidly
enforcing object identity and type is inconsistent with that need. This is far
from a simple decision, however. Just as most objects have a known type at
compile-time, most objects are not manipulated using multiple types. It is
possible to state that the object has a type and retains it for its lifetime. Com-
plicating matters is the use of malloc in C (alloc in Parasol) which skates
at the thin edge of this distinction. malloc manipulates memory that your
program may view as having a type other than ‘array of char.’
SmallTalk assumes the presence of a garbage collector, while C does not.

Almost all SmallTalk objects are stored as references while C requires that you
explicitly declare and manage references.
Lastly, SmallTalk uses a very simple expression syntax with no operator

precedence, and operators can be defined for new data types. In C, expres-
sion syntax is complicated, operators have many levels of precedence, and, are
strictly limited to the built-in data types.
Given all these differences, it is difficult to find a satisfactory wedding of the

concepts embodied in SmallTalk and the concepts embodied in C. What is the
best way to merge the two languages? Is it best to think of bringing object-
oriented extensions to C, or C extensions to SmallTalk? I have definitely looked
at the problem as bringing object-oriented extensions to C. Let us examine each
of the above major differences and how they have been dealt with in Parasol.
Where relevant, I will also mention how C++ has dealt with the same issue.

Garbage Collection

Parasol does not incorporate a garbage collector. The mutable nature of type
makes it next to impossible to collect garbage. Here is where Parasol begins to
be different from C++ as well as SmallTalk.
Garbage collection itself is a well-understood process. In order to collect

garbage, you must know where all objects are located that are still going to be
needed to finish the program. All other objects are garbage and their memory
can be reclaimed for reuse.
This is usually accomplished by tracing from an initial set of known objects

(like static and auto objects) through all references to the set of allocated objects
that can still be legitimately reached. This approach has the advantage that
code runs at full speed, changing the values of references with impunity. At
some point, usually when memory is getting low, this tracing algorithm is run.
When the number of objects is very large this algorithm can take a long time
to run.
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SmallTalk implementations typically use a reference count approach that
avoids the long execution of a tracing algorithm and absorbs overhead each
time a reference value is changed. Reference counts alone are not sufficient to
reclaim all garbage, however, since if two objects refer to each other and no
other references exist, each of the two objects is garbage. Alas, the reference
counts will not reveal this fact.
C++ defines destructors to serve as a mechanism to collect garbage in still

another way. Instead of retrieving memory automatically, the designer of an
object determines the memory allocation needed and the compiler merely ar-
ranges for the destructor to be called at the appropriate time. Determining the
appropriate times is somewhat complicated, and the object designer must still
make a detailed analysis of memory usage to be sure that a large program will
function properly.
In C, memory management is completely under the programmer’s control.

This has the advantage that no overhead is incurred, but forces the programmer
to analyze memory usage and devise schemes for reclaiming unneeded memory.
I feel that a systems-programming language is designed to serve specific

needs. Operating systems, compilers, and related programs share certain com-
mon features. More so than most other forms of programming, systems pro-
gramming is dominated by data structures. Computations rarely amount to
much more than counting, but there is a large amount of testing and moving of
data. Memory management is a significant and direct part of the programming
problem.
Any given automatic memory management strategy may be appropriate for

some problems, but for others the strategy may incur substantial penalties of
excess memory usage, slow execution, or inappropriate pauses. Because of the
importance of memory management, I believe that the correct approach to the
problem is exactly what C has done. Parasol provides no automatic memory
management procedures at all.
I believe that destructors are not an effective mechanism for systems pro-

grammers either. What they introduce is unpredictable overhead. The object
designer may have some idea of what destructors there are, but the user of
a class is led to believe that instances will take care of themselves. So, for a
programmer to have some understanding of how memory management is be-
ing handled, the programmer must discover through trial and error how the
destructors are being introduced. Mechanisms like setjmp and longjmp that
violate the strict stack discipline completely invalidate destructors.
What Parasol does is to establish a convention that a public method should

be defined for each object, called dispose, that is responsible for cleaning up the
object. Instead of being inserted automatically, the programmer must simply
be aware that the dispose method is part of the usage of the object. It is
equivalent to the need for calling close when you are done with a file.
I believe that the cost of remembering to call dispose before freeing mem-

ory is small relative to the benefit of making explicit any such overhead. If
Parasol were intended for business applications programming, or for a casual
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programming environment, then garbage collection of some form would make
much more sense.
Parasol does not solve the problem of releasing allocated memory around

setjmp and longjmp. I believe that at least since cleanup is explicitly done,
the programmer has a better idea of what cleanup needs to be handled.

Operator Overloading

I decided not to support operator or function overloading. In SmallTalk, which
effectively supports such features, the cost in the compiler is small because
there is no compile-time typing, no operator precedence, no need for generating
conversions. Conversions, if any, are performed within the code being executed
for each operator. In effect, in SmallTalk operators are simply non-alphabetic
spellings for certain commonly used methods.
Because the expression syntax of Parasol incorporates most all of the rules of

C for precedence and conversions, operator overloading would only be sensible
if conversions could be generated automatically. That would mean that a user
would have to be able to describe type conversions, perhaps as methods in a
class definition.
Deciding what to leave out of a language is more difficult than deciding what

to put in. As a user, any feature that can be exploited usefully is attractive.
As a programmer I don’t have to worry about abusing a feature, because I
know I will use it properly. Operator overloading can be a valuable tool for
defining new mathematical objects that are not in the basic set of data types
supported by the language. At that point, the same algebraic notation used for
built-in types becomes available to the class designer for new types. That said,
I believe that operator overloading is so fraught with potential abuse that I did
not implement it.
What makes the standard algebraic functions so flexible and powerful a

notation is that centuries of mathematical experience have gone into refining the
notation. Each of the numerical types that has an addition operator has been
carefully defined so that as many of the properties of addition are preserved for
all types that can be added. Operator overloading in programming languages
almost never carries any constraint on the overloaded definitions. Some of the
properties, such as commutativity, are even impossible to verify in general.
The input-output operators of C++ are a prime example of what I would

consider inappropriate overloading. There is no mathematical relationship be-
tween binary shift operators and input-output. If compact notation for printf-
like I/O was desired then I think an entirely new pair of operators would have
been a better idea.
I think that the C++ I/O operators are illustrative of the tendency to over-

load unrelated meanings onto symbols. It is a general problem in programming.
A programmer writing a large program must devise hundreds and thousands of
names for objects, functions, types, and constants. Even though most program-
mers adopt some sort of personal naming conventions to distinguish the various
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concepts being named, and programming teams often devise group-wide or even
company-wide naming conventions, it is next to impossible to make sure that
the same word is not used to mean different things.
The use of meaningful words and the willingness to distinguish long identi-

fiers minimize those sorts of problems. (Parasol distinguishes 32 character iden-
tifiers throughout.) The relatively short list of specialized operators available
for overloading invite abuse. Allowing the programmer to define new operator
tokens is little solace since arbitrary combinations of abstract symbols lack the
mnemonic content of an identifier.
Automatic conversion in the presence of overloaded operators is still more

complicated. The conversion rules of C have been carefully crafted to preserve
the value being computed. By strictly ordering the arithmetic types and de-
manding that widening the narrower type is the universal rule for all operators,
potential harm due to inappropriate conversions is minimized. Since Parasol
uses prototype-like function syntax, a common source of errors in C has been
avoided. Bugs or inconsistencies in the specification of conversions and over-
loaded definitions can lead to some very unpredictable results.
I believe that readers and maintainers of programs are much better served by

retaining as much overt meaning as possible in the program source. Already, you
must look several places in a program to know completely what an expression
does. Even so, since C operators have a certain uniformity of behavior, the
general meaning of an expression is often obvious. With operator overloading,
each token can have a unique meaning.

Parallelism

Parallel programming is a complicated subject. Hardware has been built over
the years to support parallelism in a number of fundamentally different ways.
Parasol does not try to provide support for all of these approaches. I have
examined the kind of programming Parasol currently encourages and I have de-
cided that the best marriage of parallelism and Parasol is fairly specific. Parasol
supports coarse-grained parallelism such as that found in multi-processors and
distributed memory multi-processors.
The basic model that Parasol uses assumes that the system being used is

what is called a multicomputer. In a multi-computer some number of processors
are each connected to a separate RAM memory. Each processor has exclusive
access to anywhere from one to many megabytes of memory. The processors
themselves communicate over some sort of network using variable-length mes-
sages.
This hardware environment actually describes local area networks of work-

stations as well as supercomputer-class multicomputers. Local area networks
have the potential for a large computing resource. The Next workstations for
example support an application called ’Zilla that can manage a whole group
of processors for long overnight runs. It has been used to contribute original



326 The Journal of C Language Translation – March, 1992

knowledge by computing some mathematically significant numbers.
With Parasol I have attempted to address the programming needs of such

an environment as just described. The central concept in Parasol’s approach to
parallel programming is to treat each object as a concurrently running entity.
In fact, the overhead of running a process for each object in most hardware
would be prohibitive. As a result, Parasol programs only create processes for
selected objects. Most objects remain passive entities that are called upon by
the active objects.
Some aspects of the parallel programming support are still being designed

as I write this. As a result, fewer concrete things can be said about the parallel
constructs of Parasol. I cannot, for example, report much about the level of
performance of these concepts. I do have the basic messaging functions working,
and they appear to be fast enough to make an operating system written in
Parasol and using messages slightly faster than MS-DOS running on the same
hardware.

Arenas

Objects in Parasol exist within arenas. An arena is a self-contained region of
memory in which all addressable memory locations have unique addresses. A
sequential program runs in a single arena, while a parallel program runs in
several arenas.
Parallelism is achieved by combining two different strategies. In one strat-

egy (which has been traditionally associated with parallel programming) the
programmer writes a single program source that specifies how many proces-
sors should work on a single task. A very common approach in this style of
program is to divide a problem into many distinct slices of data. Each slice is
manipulated using the same logic. I call this strategy replicative distribution.
Massively data-parallel computers are specifically designed to solve this kind of
problem.
In the other strategy, distinct programs are written with published inter-

faces. New programs can be added later that call on existing code to perform
work. I call this functional distribution. Graphics or I/O co-processors are
good examples of hardware designed to support functional distribution. Oper-
ating systems, through their system-call interfaces are good software examples
of functional distribution.
Parasol is designed to support either style of distribution. Replicative dis-

tribution is achieved by creating many arenas, each of which has essentially the
same logic. Functional distribution is achieved in two ways. First, programs
can be separately linked and special interface library units exported from one
program to another. Second, a programmer can construct subtypes derived
from arena type. Code and objects can be associated with arena-derived types,
thereby avoiding the problem of replicating everything.
Arenas are represented by arena objects within a Parasol program. Arena

objects may be declared as any other objects are. Since they can be dynamically
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created, a Parasol program can vary the number of different processors it runs
on. With some effort, it can do this as it is running.
When an arena is created, it is dormant. It is activated by attaching it to a

processor. By default, each Parasol program starts with one active host arena on
some processor. Typically, a parallel programwill ask the operating system for a
processor set, called its team. Programs can also ask for processors piecemeal,
but since allocating processors is a somewhat time-consuming task probably
involving communications over the network, allocating teams is recommended.
An active arena can allocate objects dynamically, like the local heap. Instead

of returning a normal pointer, however, an object allocated in an arena returns
a far pointer. A far pointer is simply a pointer that has been augmented to
include not only the object’s address within the arena, but also the arena’s name
as well. Since the encoding of far pointers is operating-system dependant, such
pointers should be regarded as unique ‘things.’
Functions and static objects exist in all arenas of a given type. The entry

functions of an arena type are executed only when an instance of that arena
type is started.
Unless specified otherwise, all code and static data is assigned to an arena

type called hostArena. Each program is started with one instance of hostArena
type running. This instance is named HostArena. You can specifically declare
an object to be part of a specific arena type. For example:

outputArena: type inherit arena {};
inputArena: type inherit arena {};

Infile: static.inputArena ref stream;
Outfile: static.outputArena ref stream;

Output: outputArena;
Input: inputArena;

main: entry () = // hostArena code
{

myTeam: ref team;

myTeam = team create(2, 2, PT_VIRTUAL);
myTeam start(Output);
myTeam start(Input);
...

}

omain: entry.outputArena () =
{

...
}
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imain: entry.inputArena () =
{

...
}

This code creates two named arena types, which will presumably be re-
sponsible for I/O activities. The Infile and Outfile stream pointers are then
allocated to their respective arenas. Two arenas are then created to be instances
of their respective arena types. The same main-line code then allocates a team
of two processors (the two arguments are the minimum and maximum number
of processors needed by this program).
The PT VIRTUAL flag indicates that if enough real processors are not avail-

able, the system should create virtual processors to run the arenas. A vir-
tual processor is simply a separate task running on some real processor. You
may choose to wait for enough real processors to become available, or you can
choose not to wait and simply abort the call if not enough processors are avail-
able. Management of processors and tasks is a very operating-system dependent
mechanism.
The start calls then allocate a processor from the team to each arena. The

correspondingly designated entry functions then are started for each respective
arena. Because the above code is willing to work with virtual processors, this
code will actually function on a single-processor computer. This sort of break-
down in a program may make sense when the inputs and outputs of a program
need significant format conversion. On a single-processor machine this program
will function like a UNIX pipeline.
Note that specific checks are not needed in this sample code. If these calls

fail, an exception is raised. Since this code does not catch exceptions, any
exception raised will abort the main process. When a process aborts, any
running team members attached to it are also terminated. Exceptions are
explained below.

Messages

The compiler must analyze the code to determine which references to data are
local to the arena and which must be resolved across arenas. A reference to a
static object in the same arena type will access the local copy of the object. A
reference through a simple pointer is also assumed to refer to a local instance.
References to static objects attached to a different arena type, or references
through far pointers, are assumed to need operating-system assistance.
Any call, either a member call or a call to a simple function, across arena

boundaries is resolved using messages. By default a Parasol message is treated
like a remote procedure call. A message is sent and the calling process waits
until a reply is received. The source code looks exactly like a normal function
call. Breakdowns in the communications network, an abort in the called arena,
or some other failure will generate an exception.
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Asynchronous sends will probably be added, but certain problems must
be addressed (such as how to obtain the reply value). The low-level operating-
system interface allows for the creation of a future (actually a message id handle)
that is used later when the process finally wants to wait for the reply. The
problem is that to the operating system, futures all look alike. There is no
constraint on the reply value when it finally arrives. In Parasol code, one would
want a future to be constrained so that it can only accept a reply value of the
same type as the function originally called.
I may also add a capability to send a message with no reply at all. Void

functions still have a reply (with no data in it) for synchronization purposes.
Occasionally, one may want to generate a message such as a mailgram or low-
priority log message where you don’t care about any reply. In such a case,
the caller is not stopped at all and no exception can be fed back to the caller.
Currently, that is not possible.

Exceptions

I have mentioned exceptions a couple of times so far without explaining them.
Parasol exceptions are modeled on the exception mechanism detailed in the
language CLU. The syntax currently used incorporates ideas from the syntax
employed in C++.
Operating-system code, hardware, or programmer-written code can raise

exceptions. These are synchronous, unexpected events usually associated with
errors in a program. Exceptions are coordinated through objects of type trap.
Currently, code raises an exception by calling a trap object. Code also catches
exceptions by catching the same object.
A trap object contains hardware specific state information (like the contents

of machine registers) needed to diagnose a problem.
The existing syntax for catching an exception uses a new kind of statement

called the try statement, which exists in two forms:

try
statement

except
statement

or

try
statement

except ( expression )
statement

The second form has an expression that names a pointer object. This pointer
is a pointer to trap type and when an exception occurs, the address of the
offending trap is stored in the pointer for future reference.
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When a try statement is executed the first statement clause is executed. If
it completes without any exception being raised, the second statement clause is
skipped. If an exception is raised during the execution of the first clause, then
the second clause is executed.
The second clause is like a switch in that it is typically a block with one or

more cases and possibly a default case. Instead of each case having an integral
value, as a switch does, a case in an except clause has an expression that names a
trap object. If the exception that was raised matches one of the traps named in
a case, control is transferred to that case. Otherwise, if a default case is present,
control transfers there. If no case matches and no default case is present, the
exception is propagated out to the next try statement in the call stack. break
statements can be used to drop out of an except clause just as in a switch.
When a try statement catches an exception it can continue executing, raise

a new exception, or re-raise the trap that was just raised. Re-raising a trap
preserves the original execution context for some outer try statement.
Currently, enough context is preserved during an exception to be able to

restart code after an exception. I have not actually written any code that needs
to restart from an exception, and others have raised significant theoretical prob-
lems with restarting after an exception. I have no fundamental objections to
supporting restartable exceptions, although there may be difficulties in sup-
porting such a thing on some hardware.
I am strongly considering a revamp of the exception mechanism so that try

statements catch types, rather than objects. There are a number of advantages
to such a scheme, and the cost of finding a match in a case is little different.
So far, the Parasol exception mechanism has proven to be fairly easy to im-

plement and provides a simple degree of control over error handling. Overhead
is little different from the setjmp/longjmp mechanism of C and is consider-
ably more structured. Whether the exception mechanism can withstand the
stresses of more complex environments remains to be seen. In particular, when
an exception must be propagated across an arena boundary there are numerous
problems. Currently, there is no provision for propagating meaningful context
across an arena boundary, and restarting after such an exception is likely to be
impossible.

Processes

Each running arena has at least one process executing in it. A process in
Parasol’s terms is not the same as a UNIX process. (A UNIX process is actually
both a Parasol arena and a Parasol process.)
When an arena is started, it has one process which executes the entry func-

tions of the arena, if any. When any entry functions have been executed, instead
of calling exit as the main arena does, if one of the entry functions does not
explicitly call exit, a spawned arena remains intact and the executing process
is suspended.
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When a message is sent to an arena or to an object in an arena, any sus-
pended process running in the arena is awakened to receive and process the
message.
An arena can spawn additional processes, effectively acting as threads, to

execute more than one message concurrently. A multi-processor can assign a
separate processor to each process running in an arena. Library functions are
supplied that synchronize processes within an arena.

Array Syntax

I made an early decision to remove the identity relation between arrays and
pointers that is found in C. (This identity relation says that the name of an
array used in an expression is converted to a pointer to the first element of
the array.) As a result, the subscripting operator can be described as a simple
abbreviation for combined pointer addition and indirection.
In Parasol, an array name in an expression has array type and is not con-

verted to a pointer type. As a result, the subscripting operator is sensitive to
the types of its operands. I added another constraint on subscripting that the
expression inside the brackets must be the integral expression. The expression
in front of the brackets must be a pointer or array type expression. The effect
of the subscript operator is the same as that in C.
Array operands cannot be used in arithmetic expressions as they can be in

C, however. Adding an array name to an integer is an error in Parasol.
I made this change to provide for an extension to support arrays as first class

objects. I have not done anything to implement vector operations in Parasol,
but the capability is there. A few things are supported in this version of Parasol.
Array objects can be assigned like structures, and arrays can be passed by value
in function calls and returns (just like structures).
One of the issues that arose from breaking the array/pointer symmetry in

C was the type of &array name. In C, the unary ampersand operator applied
to an object yields a pointer to the object and has the type of “pointer-to-type-
of-the-object.” It turned out in Parasol, since an array name by itself was no
longer a pointer to the first member, I needed expressions of the form &a[0]
to produce the same effect. These were so frequent and tedious that I decided
to change the rules for the unary ampersand so that when applied to array
objects, it produces a pointer to the first member with the type of a pointer to
member type. The only way to produce a “pointer-to-array-type” is through a
cast. Such a cast has not been necessary in the code I’ve written so far, but
literally hundreds of instances of &a[0] have been simplified.
In retrospect, these were not really the best choices. Since I was not adding

vector operations to Parasol, there was very little offseting the inconvenience of
writing code that scans arrays. I not only had to break the array/pointer sym-
metry to make extension to vector operations possible, I also had to gum up the
address-of operator to make traditional C-like scanning and string manipulation
code moderately convenient.
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Scanning arrays with pointers in Parasol is just as efficient as C, so the
issues here are lexical and somewhat aesthetic. I have source code that looks
about the same as corresponding C code (a few extra ampersands don’t intrude
much), but I have a language definition with some unfortunate exceptions in
the operator semantics.
Ironically, changing array syntax and semantics has given an open door to

scientific and engineering programmers (provided vector extensions are actually
implemented), while only complicating the lives of systems programmers (but
not by much). Being a dyed-in-the-wool systems programmer I would have to
consider this change a mistake.

Variable Length Arrays

One issue that arose early on in the process of adding distributed computing
support to Parasol was the problem of passing data between arenas. Pointers
are no longer a valid way of passing arbitrary-length data in a function call.
A pointer simply does not contain enough information about the length of the
array being passed to allow the compiler to pass information properly.
As a result, I added the capability of specifying variable length arrays in

function calls, either as function arguments or as return values. In order to
store return values, some way was needed to define an array object of variable
length.
The following syntax is used to declare a variable length array:

name: [;length] sometype;

The length expression is the maximum length of the array. In function
parameters the expression can be omitted. For function parameters, the length
is obtained from the array argument that is passed in the call.
Note that the semicolon is a separate token. No expression appears in front

of the semicolon.
A variable-length array object is stored as a descriptor followed by the array

elements. The descriptor is a single unsigned integer containing the current
length of the array. The space allocated is enough to hold the descriptor plus
the maximum number of elements. For a function argument, a variable-length
array is stored as a fat pointer, with the descriptor plus a pointer to the array
elements.
When sizeof is applied to a variable-length array, the value is not a compile-

time constant. Rather, it is computed at runtime based on the current value of
the array length.
When doing array assignment, the length of the destination is adjusted to be

the length of the source. Fixed-length arrays can be copied to variable-length
arrays. A variable-length array can only be copied to a fixed-length array if
the fixed-array is at least as long as the maximum length of the source. String
literals (which normally have pointer to char type as in C) can be assigned to a
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character array, and the length of the string is determined as in a C initializer.
That is, the ending null byte is counted in the size of the array if the target
array can hold it and it is not otherwise.
In order to allow pointers to participate in array assignments, Parasol also

has the concept of array slices. The syntax of an array slice is as follows:

array_or_pointer[;expression]

This converts the array or pointer expression outside the brackets to an
array with the length given in the bracketed expression. In a future extension
it will be possible to include an expression in front of the semicolon to mean
the starting index into the array.
A number of issues still remain to be resolved. Multi-dimensional arrays

currently store a descriptor for each element of the sub-arrays. In other words,
like C, in Parasol there are no multi-dimensional arrays, per se. Instead there
are arrays of arrays. So a two-dimensional variable-length array is stored as
a variable-length array of variable-length arrays. One of the by-products of
this property is that individual rows can be of different lengths. Is this a good
property? It consumes a lot of extra space for all the extra descriptors. Scientific
programmers are more accustomed to thinking of matrices where each row has
the same length.
There is a significant issue concerning dynamic allocation of variable-length

arrays. For such a thing, the C convention of using a sizeof expression in the
call to allocate an object would imply that sizeof should include the descriptor
size. Since I have not prescribed the exact size of the integer descriptor it
may be possible for an implementation to customize the descriptor size for the
maximum length of the array. What this means is that there is no portable way
to calculate the array dimension from the sizeof expression, as can be done for
fixed-length arrays. All this implies that Parasol may need a rankof operator
that returns the actual dimension of an array object, not a size in bytes.

Miscellaneous Changes

There are a few changes in the syntax of Parasol that can hardly be called
compelling. They are small changes to the C syntax that are intended to
improve minor aspects of the language. They could easily have been avoided,
but since I was already committed to a non-compatible language there was no
overwhelming reason not to change things.

Enumerators

Parasol has no enum type. Instead, when defining a named type, you can include
a set of constants that are the equivalent of an enumerator type. For example:
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enum_a: type short = {
ENUM_0,
ENUM_1,
ENUM_4 = 0x04

};

This declaration defines a named type enum a and three constants. The
enumerator constants appear in the initializer part of the declaration (since
types otherwise do not have initializers). Like C enumerators, the first name is
assigned zero and each subsequent name is assigned a value one greater than the
previous one. Also like C, an enumerator can have an explicit value assigned.
Each constant has the named type.
I added this capability to satisfy a concern voiced during the process of

standardizing C. Several proposals were put forward to allow for control of
the size of an enumerated type. The syntax I have defined here covers this
capability quite nicely.
This syntax has the advantage that even floating-point types can be defined

with associated constants.

The offsetof Operator

Since Parasol has no preprocessor, the C offsetof macro cannot be used.
Instead Parasol defines an offsetof operator. The exact syntax follows:

offsetof type_name.member_name

The type name must be a structure type and member name must be a non-
static member. This form is limited to simple members. Subscripted array
members or nested structures cannot appear in this operator. It would be
possible to extend the offsetof macro so that the right side of the dot could
be any valid addressing expression involving dots and subscripting (with no
restriction on the subscript expression). Such an offsetof expression would
be a constant if all subscript expressions are constant. I haven’t expanded
the capability of this operator because it would require a considerably more
sophisticated internal treatment of the expression.
The need for this operator came up in connection with a data-entry package.

Admittedly, this operator is not in the spirit of object-oriented programming (in
which members are hidden), but the available OOP mechanisms were awkward.
A package that must access data in a generalized way and map between external
data formats and internally defined structures has a need for this capability.
The C address operator (&) needs an instance of the structure to bind, which a
general data dictionary entry may lack.
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Operator Precedence

Perhaps the least important change I made in Parasol was to alter slightly the
precedence of a few of the operators. At some early stage of the development
of Parasol I recalled a statement in the original K&R about the shortcomings
of C. It mentioned in passing that the operator precedences weren’t right, but
didn’t elaborate.
I decided to try an experiment. I analyzed the operator precedences of C

and how I wrote C code. The following table compares the operator precedences
of C and Parasol:

Comparison of Operator Precedence
C Parasol

* / % * / %
<< >>

+ - + -
<< >>

&
^
|

< > <= >= < > <= >=
== != == !=
&
^
|
&& &&
|| ||
?: ?:

*=, etc. *=, etc.
, ,

The first change is to move the shift operators to a precedence just below
that of addition. An expression of the form a<<b+c is usually intended to group
as (a<<b)+c. In C, because of the precedence of shift, the actual grouping is
as a<<(b+c). Since the shift operator is often used as an optimized form of a
multiply or divide by a power of two, it seemed more reasonable that it bind
more like the multiply and divide operators themselves.
The other change was to raise the bit-wise operators as a group above the

comparison operators. Again, experience tells me that bitwise operators are
rarely, if ever, used as booleans. The && and || operators have the much
more commonly desirable property of short-circuit execution. As a result of
this change, bit testing expressions like the following need no parentheses in
Parasol:

if (field & BIT_MASK == 0) ...
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In C this would group as:

if (field & (BIT_MASK == 0)) ...

which is rarely a desired grouping.
Was changing operator precedences important? No. Is it going to get in

anybody’s way when learning Parasol? I doubt it. Bit mask testing is easier to
write, and if I forget and use my old C habits and parenthesize these expressions
it doesn’t hurt. Going from Parasol back to C might cause some problems.
I maintained a C compiler for seven years that printed a warning if it ever

encountered these operators together without parentheses. I never got a com-
plaint that users liked writing code without the parentheses. My experience
is that between addition and assignment, people don’t usually remember the
precedences well enough and parenthesize liberally.

The Future

This article is a snapshot of a language in evolution. I have been making design
changes even as I have been writing this article. I have tried to be intellectually
honest by stating what I actually have designed. I have tried to indicate where
the rough edges of the language are and where it is changing most.
At any moment throughout this project I have held a vision of how the entire

Parasol language and environment should interact. That vision has shifted over
time. The original vision was definitely rooted in my experience with Turbo-C.
The addition of parallelism has caused me to revise my vision in major ways.
The Parasol compiler I am now using is an integrated environment with

an editor, compiler, and debugger linked into a single executable program.
This integration means that it is very fast, but it is also very closed. Adding
extensions means recompiling the environment.
I concluded some time ago that a truly powerful development environment

must admit the addition of extensions. The use of messages exchanged be-
tween separate programs offers the low-level mechanisms for designing such an
extensible environment. So the new Parasol development environment will be
centered around a project-description data base. The debugger, compiler, edi-
tor, and browser plug into that database in various ways. I am exploring ways
to generalize the project database structure so that third-party modules can be
added.
This environment is still very much vaporware. Nevertheless, it is the needs

of this environment that are driving the current evolution of Parasol. Depending
on the overall efficiency of the system, I am even looking into the idea of parallel
compilation. Source files can be parsed into syntax trees independently of one
another and functions can be compiled into object code without regard to other
functions. The potential is tantalizing.
If Parasol is to deserve a place among the programming languages people
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use every day, it must provide capabilities that other languages lack. The
OOP extensions, the units, and the syntax changes of Parasol are nothing
really unique. It is the parallel programming features of Parasol that will really
contribute something of value.

Conclusion

How has Parasol worked in practice? Going to all the trouble of modifying
syntax and adding features isn’t worth it unless you get some benefits.
The object-oriented extensions have worked out very well. Parasol offers

better encapsulation of data and polymorphism has proven to be a valuable
way to write code that would be awkward to express in Standard C. If you
believe in the value of object-oriented programming, Parasol gives it to you
in a manner that does not involve a lot of complexity in the language or the
compiler.
Incremental compilation has proven more elusive. The problem of minimiz-

ing the computation required to rebuild a program after changes have been
made in the source has been very difficult to conquer. The syntax changes have
helped in some ways, but there is an intrinsic complexity to programs that
makes incremental compilation a challenging task.
Parasol has managed to preserve the low runtime overhead and efficient

execution that C enjoys. The techniques used by C programmers for writing
efficient expressions, loops, data structures, and functions still apply with Para-
sol. The data model employed by Parasol means that code generation on most
machines should be about the same as for C. A few of the semantic changes
involving aliasing will probably improve code generation on many machines.
The parallel constructs are new, and given the limited experience of wedding

object-oriented and parallel-programming concepts in the research community,
I expect that there will be considerable evolution in this area of the language.
I have tried to keep Parasol simple enough so that evolution will be possible.
I believe that Parasol is successful from a technical perspective. Commer-

cial success is impossible to predict. The factors that decide whether a given
language will prosper often involve issues well outside the technical arena. Who
knows, in ten years there may be a Journal of Parasol Language Translation.

Bob Jervis was author of the Wizard C compiler and the chief architect for
Borland’s popular Turbo C compiler. He is now self-employed and is developing
software using Parasol. Bob can be reached at uunet!bjervis!rbj.
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35. Miscellanea

compiled by Rex Jaeschke

Calendar of Events

• April 29–May 2, 1992Workshop on Parallel Compilation – Location:
Kingston, Ontario Canada. Researchers are invited to submit an extended
abstract of about 2,000 words by January 13th 1992. Invitations will be
made by February 15th, 1992, and final versions of papers will be required
by March 15th, 1992. Workshop Chair: David Skillicorn (613) 545 6050,
Fax: (613) 545 6453, or skill@qucis.queensu.ca.

• May 11–12, 1992Numerical C Extensions Group (NCEG) Meeting
– Location: Salt Lake City, Utah. For more information about NCEG,
contact the Convenor Rex Jaeschke at (703) 860-0091 or rex@aussie.com,
or Tom MacDonald at (612) 683-5818 or tam@cray.com.

• May 13–15, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting
– Location: Salt Lake City, Utah. WG14: Contact the US International
Rep. Rex Jaeschke at (703) 860-0091, or rex@aussie.com, or the Convenor
P.J. Plauger at uunet!plauger!pjp for information. X3J11: Address corre-
spondence or enquiries to the Vice Chair, Tom Plum, at (609) 927-3770
or uunet!plumhall!plum.

• May 24–26, 1992 X3H5: Parallel Model and Language Bindings –
Location: Ithaca, New York.

• Jun 22–24, 1992 Intensive Tutorial on High Performance Compiler
Back Ends – Location: Portland, Oregon. Contact mwolfe@cse.ogi.edu
for technical inquiries. For registration and other information contact
lpease@admin.ogi.edu.

• Jul 6–10, 1992 Intensive Tutorial on High Performance Compilers
– Location: Portland, Oregon. Contact mwolfe@cse.ogi.edu for technical
inquiries. For more information contact lpease@admin.ogi.edu.

• Jul 12–17, 1992 Joint ISO C SC22/WG21 and X3J16 Meeting – Lo-
cation: Toronto, Canada. Contact Dmitry Lenkov at dmitry@cup.hp.com
or (408) 447-5279 for information.
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• Aug 26–28, 1992 Fourth International Symposium on Program-
ming Language Implementation and Logic Programming – Loca-
tion: Leuven, Belgium. Contact maurice@cs.kuleuven.ac.be for informa-
tion.

• Sep 20–Oct 2, 1992 Second Workshop on Languages, Compilers,
and Run-Time Environments for Distributed Memory Multi-
processors – Location: Boulder, Colorado. Send abstracts to Carolyn
Mich at carolyn@cs.colorado.edu by May 8.

• Oct 5–7, 1992 International Workshop on Compiler Construction
– Location: Paderborn, Germany. The presentation language is English.
For more information contact P. Pfahler at peter@uni-paderborn.de, tele-
phone 05251/603069, or Fax 603836.

• Nov 8–13, 1992 Joint ISO C SC22/WG21 and X3J16 Meeting –
Location: Boston, Mass.

• Dec 7–8, 1992 Numerical C Extensions Group (NCEG) Meeting
– Location: Washington D.C.

• Dec 9–11, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting –
Location: Washington D.C.

News, Products, and Services

• The U.S. Department of Commerce National Institute of Standards and
Technology (NIST) has announced the beginning of its C Valida-
tion Service for the FIPS 160 C Standard. They are now accepting
requests to schedule a validation. Scheduling will be based on the order
in which requests are received. Applicants must have a valid license for
use of Perennial’s ACVS suite by the scheduled test date.

The validation service is available to both government agencies and indus-
try organizations on a cost-reimbursable basis. Demonstrated compliance
to FIPS 160 will result in the issuance of a Validation Summary Report
(VSR), a Certificate of Validation, and inclusion in the quarterly Validated
Products List (VPL). These items are all used by government agencies to
confirm that the requirements for FIPS 160 have been met. The earliest
date for certificates will be April 1, 1992.

The official test suite for validation of C compilers is the ACVS, Ver-
sion 3.0 available from Perennial, 4699 Old Ironsides Drive, Santa Clara,
California 95054, telephone (408) 748-2900, E-mail uunet!peren!acvs.

For further information or to request an information package, contact
Kathryn A. Miles, NIST, Building 225, Room A266, Gaithersburg, Mary-
land 20899, telephone (301) 975-3156, Fax (301) 590-0932. Her E-mail
address is miles@ecf.ncsl.nist.gov.
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• Release 5.00 of SAS/C for IBM mainframes is now shipping for MVS and
CMS. Contact the SAS Institute at (919) 677-8000 or Fax (919 677-8123
for more information.

• Microsoft Press has released ANSI and ISO Standard C: A Programmers
Reference, by P.J. Plauger and Jim Brodie. This is a rerelease of
their earlier Standard C in a larger format. It also corrects known errors
and adds more diagrams and explanatory material.

• The C Model Implementation developed by Knowledge Software Ltd.,
for verifying the European C validation suite (and now the U.S. one as
well) is available to end-users. For information within North America
contact Plum-Hall at plum@plumhall.com. For other countries contact
Knowledge Software at derek@knosof.uucp.

• Rational Systems, Inc., is shipping version 5.0 of their Instant-C de-
velopment system for PCs. Contact them on (508) 653-6006, Fax (508)
655-2753.

• Professional Press has released The Dictionary of Standard C by Rex
Jaeschke. This book can be bundled with a compiler manual set to
supply or augment the glossary of terms. For information about quantity
discounts contact Annette Nelson at (215) 957-4287. Her E-mail address
is nelson@proeast.propress.com. To get information about licensing the
book (or his Standard C Quick Reference Guide) in electronic form
for direct inclusion into a manual set or on-line database, contact the
author, Rex Jaeschke, at (703) 860-0091 or rex@aussie.com.

∞
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